
ARCHITECTURAL AND CIRCUIT ISSUES FOR A HIGH
CLOCK RATE FLOATING-POINT PROCESSOR

TECHNICAL REPORT NO. SSEL-251

1995

by

Thomas Richard Huff

SOLID-STATE

LABORATORY

DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE
THE UNIVERSITY OF MICHIGAN, ANN ARBOR

19960503 075 ■ rtj f\'r*? .* ' ' TT^T^'O"3^

DISTRIBUTI6N"STATEMENT A

Approved for public release;
TTmttmitari.

SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

PuDlic reporting burden lor this collection ot information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection ot information. Send comment regarding this burden estimates or any other aspect of this
collection of information including suggestions tor reducing this burden, to Washington Headquarters Services. Directorate tor information Operations and Reports. 1215 Jefterson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Protect (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

4. TITLE AND SUBTITLE
mffi?££m<t^

3. REPORT TYPE AND DATES COVERED

Technical Report

Architectural and
Circuit Issues for a High Clock Rate Floating-Point Processor

6. AUTHOR(S)

Thomas Richard Huff

5. FUNDING NUMBERS

j)ftftttof-49'<;~ol27

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

University of Michigan
Dept. of Electrical Engineering & Computer Science
1301 Beal Ave.
Ann Arbor, MI 48109-2122

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P.O.Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ftdO 33-7 90-/?-£L

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACjLiMax/mum 200 words). , . . ii- /•«■ -^-ru-u This work examines the issues confronting the designer of floating-point units for high-
performance microprocessors. Sophisticated hardware coprocessors for floating-point arithmetic have
been pursued primarily within the past decade. The development of these coprocessors parallels that of
integer processors; initially simple designs were altered to satisfy the demand for increased performance.
Architectural optimizations and technology improvements have had the greatest effect on performance.
This work will examine these issues specifically by determining the mechanisms through which a
floating-point unit can stall instruction execution, and-by describing the implementation and verification
of a GaAs floating-point design. This work represents a unique, comprehensive, and accessible study of
important issues for supporting high-performance floating-point execution.

The culmination of this work has been the design of an IEEE-754 compliant double precision
floating-point unit; the chip was designed in a 1.0 um GaAs direct-coupled FET logic process. Most of
the conclusions regarding architectural optimizations are independent of technology, though a number of
trade-offs in the design were made within the constraints of integration levels, fanin, fanout, logic
topologies, speed, and power of GaAs direct-coupled FET logic. The final FPU achieves a high level of
performance that exceeds many current leading commercial processors.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

This report has also been submitted as a dissertation in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the University of Michigan.
1995.

This work was supported in part by the Advanced Research Projects Agency under
Grant DAAH04-94-G-0327.

ABSTRACT

Architectural and Circuit
Issues for a High Clock

Rate Floating-Point
Processor

by

Thomas Richard Huff

Chair: Professor Richard B. Brown

This dissertation examines the issues confronting the designer of floating-point

units for high-performance microprocessors. Sophisticated hardware coprocessors for

floating-point arithmetic have been pursued primarily within the past decade. The develop-

ment of these coprocessors parallels that of integer processors; initially simple designs

were altered to satisfy the demand for increased performance. Architectural optimizations

and technology improvements have had the greatest effect on performance. This work will

examine these issues specifically by determining the mechanisms through which a floating-

point unit can stall instruction execution, and by describing the implementation and verifi-

cation of a GaAs floating-point design. This dissertation represents a unique, comprehen-

sive, and accessible study of important issues for supporting high-performance floating-

point execution.

A synchronization problem exists between the integer and floating-point units that

causes the FPU to stall the IPU. This can be overcome through the use of decoupling data

and instruction queues, a reorder buffer, and result busses. Increasing the number of queue

or reorder buffer entries results in improved performance that cannot be equalled either

through pipelining the FPU functional units, or by attempts to reduce floating-point func-

tional unit latency, both of which require a significant increase in resources.

One important class of stall conditions can be addressed by: analyzing memory sys-

tem characteristics; code scheduling to improve FPU performance on commonly encoun-

tered instruction sequences; selection of the FPU instruction and data transfer point in the

integer pipeline; and the degree of instruction issue. Instruction issue policies attempt to ex-

ploit available parallelism that exists in the instruction stream. Different policies offer de-

sign points which, while achieving similar performance, vary with respect to design

complexity and resource requirements. The most promising designs emphasize either the

extraction of instruction-level parallelism through greater complexity, or focus on simplic-

ity to increase clock frequency. Verification consumes an ever-increasing share of design

time as processors become more complex. Methods of functional and performance valida-

tion of the FPU are discussed. Several utilities were created to support implementation of

the high-speed VLSI chips used in the project, and suggestions for an automated approach

to performing timing analysis and logic optimization are presented.

The culmination of this work has been the design of an IEEE-754 compliant double

precision floating-point unit; the chip was designed in a 1 .Ou.m GaAs direct-coupled FET

logic process. Most of the conclusions regarding architectural optimizations are indepen-

dent of technology, though a number of trade-offs in the design were made within the con-

straints of integration levels, fanin, fanout, logic topologies, speed, and power of GaAs

direct-coupled FET logic. The final FPU achieves a high level of performance that exceeds

many current leading commercial processors.

TABLE OF CONTENTS

DEDICATION Ü

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES x

LIST OF APPENDICES xii

CHAPTER 1

Introduction 1

CHAPTER 2

Circuit Issues for GaAs 8
2.1 Description of the Technology 8
2.2 Importance of Interconnect 12
2.3 Importance of Technology Support for On-Chip Memory 15
2.4 Summary 17

CHAPTER 3

Architectural Issues for a High Performance Floating-Point Unit 19
3.1 Previous Work 19
3.2 Aurora HI System Overview 19
3.3 Simulation Methodology 21
3.4 Evaluation Criteria 24
3.5 Issue Policies 28

3.5.1 IOIO versus IOOO 32
3.5.2 Dual Transfer and Issue of Instructions 32
3.5.3 IOOO versus 0000 37
3.5.4 Reservation Station Selection Policy 45

3.6 Improving The Latency of Floating-Point Compare Instructions 48
3.7 Memory System Issues 57

3.7.1 Double-word Loads and Stores 58
3.7.2 Prefetching of Data 59
3.7.3 Improving Cache Performance for Floating-Point Code 59
3.7.4 Interface between IPU and FPU 61

3.8 Resource Allocation Issues 65
3.8.1 Sensitivity to Functional Unit Latencies and Pipelining 66
3.8.2 Reorder Buffer 67

iv

3.8.3 Instruction Queue 70
3.8.4 Load Queue 73

3.9 Miscellaneous Issues 73
3.9.1 Hardware Square Root 74
3.9.2 Store Policies 76
3.9.3 Result Busses 79
3.9.4 Divide Performed in Multiply Unit 80
3.9.5 Operand Formats 82

3.10 Simulation Accuracy Issues 83
3.10.1 Branch Prediction 84
3.10.2 Sampling and Simulation Speed/Accuracy 85

3.11 Evaluation of Final FPU Designs 89
3.11.1 Turning Off Architectural Features to Increase Clock Frequency . 89
3.11.2 SPECfp92 Comparisons 94
3.11.3 Final design 98

CHAPTER 4

Implementation of a High Performance Floating-point Unit 100
4.1 Add Unit 100

4.1.1 Adder Implementation 101
4.1.2 Add Unit Implementation 107
4.1.3 Comparison Instructions 117
4.1.4 Functional Verification 117

4.2 Conversion Unit 117
4.3 Multiply Unit 125
4.4 Divide Unit 127
4.5 Precise Exceptions 127

4.5.1 Floating-point Computation Exceptions 128
4.5.2 Memory Exceptions 130

4.6 Implementing Floating-point Loads 132
4.7 Implementing Floating-point Stores 134
4.8 Predecoding Floating-point Instructions 138
4.9 Design-For-Test Features 139
4.10 Hardware Support for Denormals 141

CHAPTER 5

CAD Support for High Performance Designs 142
5.1 General Observations on CAD for VLSI 142
5.2 Delay Calculation 143
5.3 Capacitance Extraction 146
5.4 Clock Phase Hazards 148
5.5 Clock Distribution Analysis 150
5.6 Resistance Extraction 154
5.7 Determination of Gate Path Length 155
5.8 Post-processing Optimization Utilities 160

5.9 Miscellaneous Utilities 16?
5.10 Observations About Verification 165
5.11 Future Work: A Methodology for Automatic Logic Optimization 168

CHAPTER 6

Conclusion 173
6.1 Summary of GaAs Technology 173
6.2 Summary of FPU Architectural Issues 176
6.3 Floating-Point Implementation Issues 181
6.4 CAD Support for High Performance VLSI Designs 181

Appendices 184

Bibliography 191

VI

LIST OF TABLES

Table 2.1 Area Comparison of DCFL and Buffered NOR Gates 11

Table 2.2 Comparison of 8x8 Multipliers in Three DCFL Processes 13

Table 2.3 Density comparison between 3-metal and 4-metaJ processes 15

Table 2.4 Effect of Reducing Leakage Currents on Area of 1KX8 SRAM 16

Table 3.1 SPECfp92 Benchmarks 23

Table 3.2 IPU Resources Used for Simulation Experiments 24

Table 3.3 Resource Cost in RBE Units 28

Table 3.4 IOIO Baseline Performance 33

Table 3.5 Dual Transfers and Multiple Issue of 2 Instructions 35

Table 3.6 Dual Transfer Utilization 35

Table 3.7 Upper Bound for OOOO Performance Improvement 39

Table 3.8 Issue Policies (IOOO vs OOOO) 40

Table 3.9 High Level FP Stall Sources 41

Table 3.10 Latencies for Floating-Point Compare Instructions 41

Table 3.11 Avg Latencies of Various Floating-Point Instructions for Hydro2d 42

Table 3.12 Breakdown of Average Load Latencies (IOOO Baseline) 44

Table 3.13 Issue Rate for IOOO and OOOO Policies 45

Table 3.14 Resource Allocation for IOOO and OOOO Policies 46

Table 3.15 Resource Allocation and High Level Stall Sources (IOOO Policy) 47

Table 3.16 Reservation Station Entry Selection Policy 47

Table 3.17 Branch-on-FPU Stalls (IOOO Policy) 48

Table 3.18 Compare Latencies for High Branch-Stall Benchmarks. 48

Table 3.19 Common Compare Instruction Sequences 51

Vll

Table 3.20 Branch-on-FPU Stall Cycles for Different Organizations 54

Table 3.21 Average Instruction Queue Entries for Different Organizations 54

Table 3.22 Removing Reorder Buffer Latency for Compares 57

Table 3.23 Utilization of dein Bus 64

Table 3.24 Utilization of dcOut Bus 65

Table 3.25 Basic Block Sizes for SPECfp92 70

Table 3.26 CPI for Queues and Different IPU/FPU Clock Frequencies 72

Table 3.27 Load Queue Size 74

Table 3.28 Store Policies 77

Table 3.29 Average Delay Between Issue of a Store Issues and Data Availability .. 78

Table 3.30 Average Number of Store Queue Entries 79

Table 3.31 CPI Performance for Different Numbers of Result Busses 80

Table 3.32 Divide Performed in Multiply Unit 81

Table 3.33 Overhead for Conversions in Single Precision Benchmarks 83

Table 3.34 Effect of Branch Prediction on CPI = 1.3 (New CPI and %Change).... 84

Table 3.35 Comparison Metrics (50M / IG Instrs. and % Difference) 87

Table 3.36 Functional Unit Latencies (50M / IG Instrs. and % Difference) 87

Table 3.37 Dynamic Instruction Use (50M / IG Instruction Run-Lengths) 88

Table 3.38 Percentage of Memory References that Miss in the IPU Mini-TLB 92

Table 3.39 Aurora m SPECfp92 Comparison 95

Table 3.40 SPEC Ratings for Current Microprocessors 96

Table 3.41 SPEC Ratings for Current Microprocessors, continued 97

Table 4.1 Comparison of Path-Delay for Optimization Program and HSPICE ... 105

Table 4.2 Ling Adder Implementations Used in FPU 106

Table 4.3 Floating-Point Addition Algorithm 107

Vlll

Table 4.4 Two Cycle Add Unit 109

Table 4.5 Generation of Final Exponent 116

Table 4.6 Leading One Prediction for the Conversion Unit 125

Table 4.7 Multiplier Implementations 126

Table 4.8 Predecode Logic Statistics 139

Table 5.1 Global Capacitance Tuning 148

Table 5.2 Average Inputs per Output for Control Logic 170

Table 5.3 Gate-Depth for CMOS versus GaAs Logic Synthesis 170

Table 6.1 Performance Projections for GaAs and C-GaAs 175

IX

LIST OF FIGURES

Figure 1.1 FPU Clock Frequency vs Year 2

Figure 1.2 FPU Transistor Count vs Year 2

Figure 2.1 Two-input NOR and Transfer Function 9

Figure 2.2 Feedback Buffer 9

Figure 2.3 4-Input NOR Squeeze Gate 11

Figure 2.4 Interconnect Capacitance Reduction (%) 13

Figure 2.5 Unloaded Gate Delay Reduction (%) 14

Figure 2.6 SRAM Cell Power vs. Cell Size 17

Figure 3.1 Processor Block Diagram 20

Figure 3.2 Aurora IE FPU Block Diagram 22

Figure 3.3 Dynamic Instruction Breakdown for SPECfp92 25

Figure 3.4 Ratio of Integer to Floating-Point Instructions for SPECfp92 34

Figure 3.5 Issue Degree for IOOO Policy 36

Figure 3.6 Percentage of Dual Issue Instructions and Cycles 38

Figure 3.7 Comparison of IOOO and fast 0000 Policies 41

Figure 3.8 Reorder Buffer Entries Needed for IOOO and 0000 Policies 43

Figure 3.9 Timing For Aurora ID. Memory System and Early Instr. Transfer 52

Figure 3.10 Timing For 1-Cycle Memory System and Early Instr. Transfer 53

Figure 3.11 Upper Bound on Performance via Improved Compare Latency 55

Figure 3.12 Performance Improvement via Double-Word Load Instructions 59

Figure 3.13 Performance vs. Resource Cost for Floating-Point Functional Units ... 68

Figure 3.14 Queue and Reorder Buffer Resource Allocation 71

Figure 3.15 Instruction Queue Size 72

Figure 3.16 Percentage of Instructions Due to Square Root 75

Figure 3.17 Performance Benefit via Hardware Support for Square Root 76

Figure 4.1 53-bit Ling Adder 102

Figure 4.2 Merged Nor-Latch-Buffer Cell 105

Figure 4.3 Add Unit 108

Figure 4.4 Generating A+B+2 for RM/RP Rounding Modes Ill

Figure 4.5 Generation of SH Vector for LOP 114

Figure 4.6 Conversion Unit 119

Figure 4.7 5 Cycle Iterative Partial-Array Multiply Unit 127

Figure 5.1 Recursive Network Traversal 145

Figure 5.2 Clock Skew for A Rip-Flop Based Design 149

Figure 5.3 Clock Hazard for 2 Phase Design 150

Figure 5.4 Sorted Clock Transit Times (No Resistances) 152

Figure 5.5 Clock Transit Time vs. Chip Location for Aurora II CPU 153

Figure 5.6 Sorted Clock Transit Times (With Initial Resistances) 153

Figure 5.7 Sorted Clock Transit Times (With Final Resistances) 154

Figure 5.8 Run-time Increase For High Degree of Connectivity 158

Figure 5.9 Multiply Unit Critical Paths of Current and Previous Phase 159

Figure 5.10 FPU Critical Paths of Current and Previous Phase (excl. FU's) 160

Figure 5.11 Add Unit Critical Paths of Current and Previous Phase 160

Figure 5.12 FPU Delay, Capacitance, Fanout Before and After Buffer Selection .. 162

Figure 5.13 Pattern Matching Logic Optimization 163

Figure 5.14 Factoring Late Arriving Signals Via Mux-Reduction 171

XI

LIST OF APPENDICES

Appendix A

Aurora III Chip Layout 184

Appendix B

Corrections to Add Unit Logic 185

Appendix C

References used for plots of clock frequency vs. year and transistor count vs.
year 190

Xll

CHAPTER 1

Introduction

The use of sophisticated hardware coprocessors for floating-point computations has

occurred primarily within the past 8 to 10 years. VLSI chips devoted to floating-point arith-

metic appeared in the early 1980's and at first offered only single-chip adders and multipli-

ers. These tended not to be pipelined and often required external control units and register

sets. The appearance of high performance workstations has resulted in an increasing num-

ber of applications that utilize floating-point arithmetic. Fields such as computer graphics,

which in the past have depended on integer arithmetic, are moving toward specialized float-

ing-point graphics processors. In addition, the past decade has seen significant growth in

digital signal processing, and a similar move away from range and precision constraints

through the use of floating-point numbers. In many ways, the brief history of floating-point

processors parallels that of integer processors. Designs were initially simple, but with time,

performance gains were achieved through both architectural optimizations and technology

improvements which led to increases in complexity. Processor performance has improved

at a uniform rate of 50% per year over the past 10 years [Upton94]; Figure 1.1 shows that

floating-point unit clock frequency has also increased approximately 50% per year (refer

to Appendix C for the references). Much of the increase in clock frequency can be attribut-

ed to better process technology. As Figure 1.2 shows, there is also a corresponding increase

in the amount of circuitry used in floating-point units. In particular, addition and multipli-

cation algorithms have benefitted from optimizations which have reduced the latency of

both to as few as 2 cycles. Addition algorithms have been optimized through leading zero

prediction and the mutually exclusive characteristics of normalization, alignment, and

rounding. Multiplication improvements have been due to the use of Wallace arrays and

Booth recoding.

MHz

uu .

1 !

on i„
uu .

<
• < t i

1 "
1

< > • •
< > • 4 >

" • • < >
<

m
' I i i • •

i \j. (i

1-

* >

1984 1986 1988 1990 1992 1994
Figure 1.1 FPU Clock Frequency vs Year

1000

Transistors
(in thousands)

100
I
<

4
4

>

>

4

4

I
>

4
(

(

>

<

*

>

<

i i

-r-rrr-

< *

10
198419851986198719881989199019911992

Figure 1.2 FPU Transistor Count vs Year

Integer processing units (IPU's) and floating-point units (FPU's) share a similar

history of applying more complex architectural solutions in order to gain performance. In

the early 1980's, microprocessors were not pipelined, did not contain on-chip caches, and

often required many cycles to complete an instruction. In recent years many supercomputer

features have been applied to the design of microprocessors, including pipelining, caches.

load/store instruction sets, multiple execution units, higher degrees of instruction issue, and

virtual memory. While some of these approaches have been applied to floating-point de-

sign, a more complete investigation of the design space is warranted, with the goal being a

latency tolerant high-performance GaAs FPU. This dissertation represents a unique, com-

prehensive, and accessible study of important issues for supporting high-performance float-

ing-point execution.

The development of a processor system involves four steps: evaluation of micro-

architectural choices in order to minimize cycles-per-instruction (CPI), implementation of

a circuit that efficiently supports the architecture in light of technology constraints, func-

tional validation, and critical path analysis to optimize clock frequency. Architectural ex-

periments focus on identifying bottlenecks that limit performance, such as conditions that

generate stalls. A number of metrics can be used in the architectural studies. The progress

of individual instruction types through the machine can be tracked by the average latency

that an instruction takes to reach the various points of interest: the floating-point instruction

staging area, the issue point within the FPU, the completion of the instruction into the re-

order buffer, and the write-back of the register file. Additional parameters that are impor-

tant to consider include dynamic instruction frequencies, basic block size, bus utilization,

average degree of issue, sizes for different types of resources, and of course CPI. These

measurable quantities will be used to discover ways of improving performance.

Processor performance has been progressing at a historical rate of about one percent

per week, and the design and verification time for any additional feature should be justified

against this standard. An improvement of less than 10% is of doubtful benefit, unless it is

very simple to implement, especially in consideration of the accuracy limitations of most

analysis techniques. For example, while trace-driven simulation provides access to billions

of instructions, the design space is so broad and the possible experiments are so varied that

simulating this amount of instructions may not be reasonable for each run. Inevitably, ques-

tions arise about how to improve the simulation speed and how to ensure the veracity of the

results. These issues will be briefly examined in the context of instruction sampling and er-

ror sources.

The architectural experiments presented in this dissertation begin with the analysis

of three issue policies for floating-point instructions. These policies specify whether in-

structions issue and complete in order or out of order; each requires a different degree of

resources and design complexity. Integration levels are an order of magnitude lower for

GaAs than for CMOS; this drives many decisions concerning resource allocation. The next

architectural experiment sought to answer the question: how sensitive is overall perfor-

mance to the latency of floating-point functional units? Approaches for reducing latency

tend to require an increase in resources, since more conditions need to be resolved earlier

in time through the use of parallel logic. The effects of pipelining functional units impacts

chip area. A designer needs to know how the cost/benefit ratio compares to that of adding

other features, such as additional reorder buffer entries. Design time must also be consid-

ered, since lower-latency functional units are often more complex and require more valida-

tion. Other questions related to the characteristics of the functional units include: what

applications use square root and does it make sense to support this operation in hardware;

are addition operations common enough to warrant a second add unit; can division be per-

formed within the multiplication unit without degrading the performance of multiply in-

structions; what precision operand formats should be supported since these also will have

an impact on area and critical paths?

Since integration levels are low for GaAs, the IPU and FPU need to be partitioned

into separate chips, which increases the latency of floating-point operations, due to chip

crossings. Queues can be used to decouple these units and allow more instruction slip, but

this approach has an impact on the support of precise exceptions. The dissertation discusses

different characteristics of memory and floating-point computation exceptions, and shows

how performance will be affected by each type. There may also be an intrinsic difference

in clock frequencies between the IPU and FPU, which queues can hide.

Memory access time has improved at a much slower rate than processor speed; sup-

plying instructions and data for a machine with a 4ns clock period becomes difficult. In

GaAs, integration levels severely constrain the amount of cache that can reside on-chip, so

other techniques are needed to offset the corresponding loss in performance, such as

prefetching and higher bandwidth for memory accesses.

In currently-available packaging technology, a multiple chip design places de-

mands on the limited number of package pins. This argues for sharing I/O pins between the

FPU and data cache. The impact of this approach is evaluated. These interfacing issues also

affect the point in the integer pipeline at which floating-point instructions are transferred to

the FPU. Depending on the degree of issue and the latency of the first-level data cache, a

later transfer point might add unnecessary latency to every floating-point instruction. Bal-

ance between processing and communication resources is also important as instruction par-

allelism increases within the FPU.

In the multidimensional design space briefly described above, different design

points may achieve similar performance in very different ways. For instance, a complex de-

sign might implement dual issue and an out-of-order completion policy using a reorder

buffer, in effect trading clock frequency for a decrease in CPI. On the other hand, a simpler

design might forgo the use of a reorder buffer, choosing instead an in-order issue and com-

pletion policy and a more conservative mechanism for supporting precise memory excep-

tions. If the performance of these two implementations is similar, the simple design would

be favored for the benefit of its shorter design cycle and an ability to more easily track tech-

nology improvements.

Once a micro-architecture has been defined, a specific implementation is chosen

that is suitable to the features and limitations of the target technology. For example, several

types of adders are used in various parts of the FPU design; issues such as fanin, fanout,

logic topologies, area, speed, and power determine which designs are best suited for a GaAs

processor. Most of the functional unit designs used in the FPU originated with work done

elsewhere. These schemes, all of which strive to reduce latency, are evaluated in this dis-

sertation in the context of GaAs technology. Several issues which have been overlooked in

those designs will be briefly discussed and a novel approach for the design of a conversion

unit will be presented. At a higher level, the dissertation will examine predecoding to re-

duce the gate-depth of critical issue logic and ways of balancing observability during test-

ing versus design time, resource requirements, and impact on critical paths. Methods of

supporting floating-point loads, stores, and precise memory exceptions will also he dis-

cussed. Finally, functional verification of a complex design will be examined primarily in

the context of random testing, both at the functional unit level and at the higher instruction-

stream level.

The last component of a processor design involves the analysis tools that provide

feedback about timing and functionality. Often, custom utilities need to be written in order

to address a specific need, and these point tools must be developed quickly since their ab-

sence can delay a particular phase of the design. The programming environment chosen for

the tool will depend on the nature of the problem, including both how large a design the

utility will be used for and how often this particular analysis will be performed. Chapter 5

will discuss a number of tools that have been created in order to enable different analysis

capabilities, beginning with a delay calculator that supports accurate determination of

GaAs circuit delays. This utility which provides input to static timing analysis is essentially

a recursive network traversal engine, which in turn is the core of several other tools. For

example, a set of tools based on this engine has been developed to support designs such as

Aurora m, which uses a two-phase clocking scheme. In spite of a designer's best inten-

tions, identifying all hazards is difficult without an automated approach; missing even one

such error can seriously reduce the effective clock frequency. Control of clock skew is also

an important issue for high-frequency designs, and a second set of utilities built on the net-

work traversal engine has been created to extract the clock distribution network and gener-

ate a ready-to-run HSPICE netlist. Information derived from simulating this netlist is used

in several ways, including identification of latch-to-latch skew, clock transit time to any

point on a chip, and wire sizing along the distribution network to control interconnect re-

sistance. Timing analysis also focuses on reducing gate-depth along critical paths, and a

third utility supports this type of analysis. A latch-based design allows time to be borrowed

from the phase that precedes or follows a critical path. Consequently, the target logic depth

of 20 gates per phase can be relaxed in certain instances if the worst-case previous path is

shorter than this threshold. The levelizer utility generates 2D and 3D histograms that enable

7

the designer to quickly identify sections of logic that require improvement.

Finally, an automated high level timing methodology is described as a motivation

for future work. During the design of the FPU, it became apparent that a large class of tim-

ing optimizations currently must be performed by the user. These transformations tend to

be quite mechanical and include factoring out late-arriving signals, pattern matching logic

optimization, manual retiming, and buffer selection and sizing. Altogether, these different

actions could be collected into an extremely effective automated timing analysis and opti-

mization system.

The observations of this dissertation have culminated in the implementation of a

GaAs FPU which achieves a high level of performance comparable to current leading com-

mercial processors. Based on the extensive simulations of this study, this FPU delivers this

performance while only infrequently stalling the integer processing unit. The design is

IEEE compliant with respect to rounding modes and exceptions, supports 40 floating-point

instructions, consists of 500,000 transistors, operates at a clock frequency of 250MHz, and

achieves a SPECfp92 rating of greater than 300.

CHAPTER 2

Circuit Issues for GaAs

2.1 Description of the Technology

Direct-coupled FET Logic (DCFL) gates are similar in topology to NMOS, with in-

verters and NOR gates comprising the basic building blocks. Enhancement pulldown and

depletion pullup devices are ratioed in such a way as to provide desired output high and low

voltages over normal operating conditions. The depletion device is source-gate connected

to provide a current source. Gate delay for an unloaded device is on the order of 60ps and

loaded gates typically have delays in the range of lOOps to 150ps. The gate of a MESFET

is actually a Schottky diode; there is no gate dielectric as is in MOSFET devices. This diode

gate introduces several unique issues into the design of VLSI circuits, one example being

the small voltage swing for these devices. Since the gate is a diode, the gate voltage for a

logic high is clamped to a single diode drop, on the order of 0.6 volts. For logic gates to

function properly with such low output-high voltages, the enhancement transistors must

have small threshold voltages, typically about 0.2 volts. Consequently, designs are sensi-

tive to voltage drops along the ground rail. A top-level aluminum interconnect plane is used

to provide a clean ground with less than 20mV of noise; each cell connects directly to this

plane. IR drops along Vdd are not as critical and gates operate correctly with little loss in

speed for a power supply voltage as low as 1.2 volts. Power is routed in Metal 3 and is sized

such that no gate sees an IR drop along Vdd of more than 0.5 volts.

The diode gate of a MESFET also results in an unusual transfer characteristic, as

shown for the NOR gate of Figure 2.1. As the input voltage increases beyond 0.8 volts, the

output voltage begins to rise; above a certain input voltage the output erroneously becomes

a logic one. When this phenomenon occurs, the diode gate current is large and the gate-

Vout

Vin
Figure 2.1 Two-input NOR and Transfer Function

drain junction becomes forward biased. Though DCFL signals are normally clamped by the

driven gates, when large buffers are used to quickly change the state of highly capacitive

interconnect the overdriving condition may occur. The buffer used to drive such a net may

provide a current which is appropriate for charging the wire but is too large for destination

gates. A solution used for the Aurora I design (the first of three GaAs microprocessors de-

signed in our research group) involved placing a diode at the output of each buffer cell in

order to clamp the output high signal to one threshold voltage. A more effective feedback

approach for buffering was subsequently obtained from Vitesse and has been used for later

designs. Shown in Figure 2.2 [Fulkerson91], this buffer provides a large transient current

to charge a wire, then reduces its drive, providing a smaller current to maintain a stable log-

ic high voltage. The small feedback transistor (typically 5 microns wide) serves the same

purpose as the diode used in the earlier design, but has the advantage of more quickly dis-

charging the internal node of the buffer. To improve the noise margins and yield of this con-

struct, a small diode is often added at the drain of the feedback transistor. This diode serves

to boost the voltage level of the internal node, and consequently the level of a logic high.

The feedback transistor is on only while driving a logic high. For a logic low, the pullup

transistor of the output stage is off and the pulldown transistor acts as a current sink. This

^

IN- ±i5.
OUT

Figure 2.2 Feedback Buffer

10

behavior adds a frequency-dependent component to overall power dissipation, whereas the

power dissipation of conventional DCFL gates is almost independent of the operating

speed. These buffers are among the most commonly used cells in a design, and can contrib-

ute more than 40% of the power of a chip; to be accurate, estimation of power dissipation

must reflect this dynamic power component.

Another characteristic of the GaAs technology being discussed is a high transistor

source resistance, which tends to limit the use of stacked transistor logic, such as NAND

gates. A 2-input NAND represents the highest degree of stacking that is allowable, but does

not offer a speed advantage compared to an inverter-NOR version of the same function.

The use of only DCFL NOR gates can increase the number of levels along critical paths

unless special circuit structures are used; critical path lengths for the Aurora II design had

15% more gates than a comparable CMOS implementation. One such structure used exten-

sively for later designs is an Earle latch that combines a 2-input mux with a latch and a high-

current output buffer. The latch/output-buffer operates in a feedback mode similar to that

just discussed. This circuit accounted for 40% of the circuit area of the Aurora II design.

Leakage currents, which are several orders of magnitude larger in GaAs than sili-

con devices, constrain the maximum fanin of a DCFL gate to four inputs. More inputs re-

duce the logic high level, especially at higher temperatures. However, there are times when

a larger fanin gate is needed to reduce delay along a critical path. A solution can be found

by extending the feedback buffer to support the additional inputs.

Because this gate type ensures that output pullup and pulldown transistors are not

on simultaneously, one can size these transistors solely for their driving capability and not

in consideration of noise margins. As a result, the pullup device will be large enough to ac-

commodate the leakage currents of a reasonable number of pulldown devices, while still

providing a sound logic one. Figure 2.3 shows a 4 input version of this type of gate. These

buffered gates need to be used judiciously since they are more costly in terms of area than

their DCFL counterparts, as shown in Table 2.1. The 5- to 8-input DCFL areas listed in this

table are estimates, since these gates are not functionally reliable across process and tem-

perature comers and thus have not been implemented. The buffered versions of these gates

11

Figure 2.3 4-Input NOR Squeeze Gate

use large transistors for the output stage; the difference in area could be reduced by using

smaller transistors, but at the expense of capacitive driving capability.

The diode gate also makes pass gates and dynamic logic more difficult or altogether

impractical. The control and data signals to pass gates need to be driven by buffered cells

to operate correctly at high temperatures. The register file design in the first two Aurora

chips made use of a pass gate latch in order to reduce area, and was simulated thoroughly

in order to ensure functionality. Dynamic logic tends to be difficult to implement in GaAs

due to the current which flows into the gate terminal of MESFET transistors. This current

is typically small, on the order of 10 to 30 uA, but can still be disruptive for dynamic pre-

charging of nodes. Accurate analysis tools are a necessity when utilizing dynamic logic and

a failure in this area can result in a design which is not functional at any frequency. Current

Table 2.1 Area Comparison of DCFL and Buffered NOR Gates

Fanin
DCFL Area

(um2)
♦estimated

Buffered Area
(um2) % Difference

1 558 1364 144

2 823 1730 110

3 1101 2021 84

4 1401 2294 63

5 1730* 2591 50

6 2095* 2876 37

7 2503* 3162 26

8 2961* 3434 16

12

into the gate of transistors also places a constraint on how much fanout is tolerable, since

the loads connected to a driving gate may exceed the current sourcing capability of that

gate. The distribution of reset is a case where performance may not be an issue and fanout

may be quite large. Analysis tools need to identify situations like this in order to ensure

proper functionality.

2.2 Importance of Interconnect

The importance of interconnect in a VLSI process cannot be overstated. The switch-

ing delay, t, for any logic family, is related to the difference in charge between states at the

output of a logic gate, and to the current available to effect a change of state: t ~ —. Sen-

sitivity to parasitic loading varies with process and logic family. In FET technologies, this

is the dominant delay mechanism; it calls for small logic swings, high transconductance,

and low parasitic capacitance.

Most of the parasitic capacitance comes from interconnect. Of primary importance

is keeping the circuit area as small as possible to minimize wire length; this reduces both

parasitic capacitance and time-of-flight for signals. Routing capacitance is minimized by

using sufficient levels of interconnect, narrower lines, larger separation between intercon-

nect layers, and lower dielectric-constant insulators. The effect of reducing the space be-

tween lines, as is done when processes are scaled, is not immediately obvious; while it

reduces the circuit area, it does increase horizontal line-to-line capacitance. To evaluate the

significance of interconnect on overall area utilization, we looked at an 8x8 multiplier im-

plemented in several GaAs process technologies. The total-routing-area data shown in

Table 2.2 makes a strong case for reducing interconnect spacing to the fabrication limit

[Brown92b]. Table 2.2 also demonstrates how smaller transistor dimensions have a smaller

effect on overall layout utilization.

The importance of minimizing interconnect capacitance is illustrated in Figure 2.4

and Figure 2.5, which show the effects of reducing capacitive load and of reducing unload-

ed gate delay on four critical paths in the Aurora II microprocessor. The logic paths in these

13

Table 2.2 Comparison of 8x8 Multipliers in Three DCFL Processes

Gate Meta! Metal 1 Metal 2 Metal ?
Total

Layout Area
Total Routine

Area

Process A 1.00 1.00 1.00 1.00 1.00 1.00

Process B 0.90 0.60 0.50 0.28 0.49 0.21

Process C 0.50 0.97 1.11 1.43 0.97 0.82

plots are from the register file (RF), adder (Al and A2), and branch logic (BR). (These fig-

ures ignore the fact that faster gates would have greater transconductance and therefore

drive the capacitive loads more effectively). The plots show clearly that reducing intercon-

nect capacitance would be even more effective at increasing circuit speed than would re-

ducing intrinsic gate delay. The effects on path delay vary among the paths simulated. The

smallest difference in results is for the branch logic, where a 50% reduction in capacitance

has a 40% greater effect than a similar reduction in unloaded gate delay. The biggest dif-

ference is in the register file, where capacitance has a 248% greater effect. The branch path

consists of a large number of lightly loaded paths, whereas the RF path involves a smaller

number of heavily loaded gates.

The importance of having enough layers of interconnect merits further illustration.

In our designs, Gate Metal and Metal 1 are used for wiring inside of leaf cells, and Metals

3-

2.5

2
Path Delay

(ns) 1.5

0.5

■ "--"♦ »»^^ ^^«

0 10 20 30 50

Interconnect Capacitance Reduction (%)

Figure 2.4 Interconnect Capacitance Reduction (%)

14

Path Delay
(ns) 1.5

0 10 20 30 50

Gate Delay Reduction (%)

Figure 2.5 Unloaded Gate Delay Reduction (%)

1, 2, and 3 are used for datapath, standard cell, and global routing. Metal 4 is a ground

plane, and Vdd is distributed on Metal 3. Table 2.3 shows the improvement in density

which resulted in moving from HGaAs II (a 3-metal process) to HGaAs HI (a 4-metal pro-

cess). Of course, geometric design rule changes between the processes and other factors

also effect the density, but cells tend to be interconnect-limited instead of device-limited.

The control blocks are different circuits (bypass logic in HGaAs II and stall logic in HGaAs

HI), but they are about the same size, and both are implemented in standard cells using the

same logic synthesis tool (Finesse, from Cascade Design Automation). The register files in

Table 2.3 are both 32-word x 32-bit, three-port, tree-decoded, pass-gate latch implementa-

tions, which differ only in buffering.

The density numbers for both CPU's include all of the unoccupied space in the pad

frame - there is actually more unused space in the version with 4-metal interconnect. Some

of the increase in density is due to the inclusion of additional memory structures for the

small on-chip instruction cache on the 4-metal chip. But even when this difference is fac-

tored out, the HGaAs HI version of the CPU is still about 2.4 times denser. In this analysis,

half of the improvement is due to the third layer of routing; improved circuit structures and

layout techniques incorporated into newer CAD tools account for another 35%, and the re-

15

Table 2.3 Density comparison between 3-metal and 4-metal processes.

Circuit
HGaAs II
Transistor

Count
Density

(Trans./mrrr)

HGaAs III
Transistor

Count
Densitv

(Trans./mm")

Largest
Control
Block

582 1067 516 1364

Register
File

21,910 2014 23.278 4253

CPU 60,500 540 160,000 1475

maining 15% of improvement results from smaller line widths in the HGaAs III process.

Adding interconnect layers to a digital process beyond a routeable gate metal, 3 in-

terconnect levels, and a ground plane would result in diminishing returns. Trying to achieve

high performance in a DCFL process with fewer than five layers or with a coarse intercon-

nect pitch or an inefficient design style, though, starts a vicious cycle. A larger layout has

more capacitance, therefore requiring larger buffers, which further increase the layout size,

parasitic capacitance and power dissipation, further requiring larger buffers.

2.3 Importance of Technology Support for On-
Chip Memory

The data and conclusions for this section are derived from work done by Ajay

Chandna [Chandna94, Brown92b].

On-chip memory that is fast and efficient in area and power is essential to achieving

performance for modern processor designs. The latency in going off-chip for the first level

data cache in the Aurora JR architecture is very costly to overall performance, as will be

discussed later. Appropriate partitioning, the use of decoupling queues, and a fast system

substrate all contribute to offsetting the lower integration levels of GaAs. Ultimately, how-

ever, it is not possible to avoid the need for dense, fast memory that is closely coupled to

the computation units of a design. This section will discuss GaAs technology in terms of

the characteristics that are a necessary to adequately support memory on-chip.

16

Subthreshold currents in MESFETs are several orders of magnitude larger than

those in MOSFETs. In static RAM structures, area and power are strongly related to leak-

age current. Though much less attention has been focused on minimizing leakage currents

than on increasing transconductance, leakage currents are as important to performance. If

too many memory cells are connected to a bit line, the leakage current through the pass

transistors connected to unselected memory cells (about lOOnA/bit) could corrupt the data

of a selected memory cell (about 20uA). The total leakage on a bit-line should be an order

of magnitude smaller than the active current. Consequently, for GaAs, the number of bits

that can be safely connected to a column is limited to 32. This constraint requires that a sig-

nificant portion of the total RAM area be devoted to sense amplifiers and write circuitry.

Table 2.4 shows how SRAM area would decrease if leakage currents could be reduced to

allow more memory cells per column, thereby amortizing the column support circuitry over

more bits [Oettel92]. As can be seen, for this design at 32 bits/column only 70.6% of the

total chip area is consumed by the memory cells. A reduction in leakage current by only

one order of magnitude would increase the percentage of area occupied by the memory

cells to 92% of the total area.

In any technology, the pullup of a static RAM cell should provide just enough cur-

rent to offset the leakage current of the pulldown devices. Leakage currents, therefore, also

set the lower limit for cell power. In conventional GaAs DCFL processes, long, minimum-

width depletion transistors are used to keep this current small. The characteristics of these

devices present an area/power trade-off; for example, in the SRAM used for the Aurora III

design, the highest impedance standard-threshold depletion transistor that fits in a 400um2

cell provides much more current than is needed to offset the leakage currents. As the area

of the cell is decreased, the pullup length must be decreased, increasing the power. Figure

Table 2.4 Effect of Reducing Leakage Currents on Area of 1KX8 SRAM

Number of Bits / Column 32 64 128 256 512

Normalized SRAM Area 1.00 0.87 0.80 0.77 0.75

Cell Area Percentage of Total Area 70.6 81.6 88.4 92.1 93.8

17

Cell
Power
(uW)

250

200

Normal Depletion Load-
Special Depletion Load-

Polvsilicon Load ■

240 260 280 300 320 340

Cell Area (um2)

Figure 2.6 SRAM Cell Power vs. Cell Size

2.6 shows the effect of varying the pullup length (cell size) on power dissipation. This plot

includes curves for a digital process pullup transistor, a special higher-threshold depletion

transistor, and a polysilicon load. The polysilicon load curve was constructed assuming

lightly-doped resistors, which can be located above the remaining 4 transistors, adding no

additional area. As seen in the Figure 2.6, poly loads are invaluable to SRAM designs.

2.4 Summary

GaAs was chosen as the implementation technology for several reasons. First, its

fast gate switching speeds and low power supply voltage seem to offer a desirable power-

delay product for high-performance VLSI designs. We have designed three processors in

GaAs, ranging from a very simple machine to a full-functioned superscalar design. These

designs provided an opportunity to evaluate GaAs DCFL in realistic VLSI designs. Second,

GaAs MESFET process technology is fairly simple, requiring many fewer fabrication steps

than CMOS and offering the prospect of reasonable yields (and cost) for large designs. Oth-

er factors which can affect cost include integration density, packaging, wafer cost, and de-

sign time. Third, this technology provides a foundation for exploring a wide range of high-

18

performance issues whuch might otherwise be difficult for a university research project.

CHAPTER 3

Architectural Issues for a
High Performance Floating-

Point Unit

3.1 Previous Work

Previous work by the GaAs Microprocessor group at the University of Michigan

has focused on both the development of a CAD environment appropriate for GaAs design

and two initial implementations of the CPU architecture. The first version, called Aurora I,

was based on a simple 5 stage pipeline, with 32 word register file and ALU. The chip exe-

cuted 30 instructions from the MIPS Instruction Set Architecture (ISA), consisted of

60,000 transistors, and operated at 100MHz [Brown92a], [Brown93]. This chip served to

drive the selection and development of many of the tools needed to design and analyze

VLSI circuits in GaAs. The goal for the second generation of the CPU, Aurora n, was to

study issues in high speed microprocessor architectures, including support for caches and

exceptions. The chip implemented an additional 10 instructions, was comprised of 160,000

transistors (in the same area as Aurora I), and operated at 180MHz [Upton93]. In addition,

timing analysis capability was added to the suite of design tools.

3.2 Aurora HI System Overview

A block diagram for the Aurora HI system is shown in Figure 3.1. The system is

comprised of four custom GaAs chips: three logic chips and a 32K-bit SRAM used for

building a 64 K-byte external data cache. The logic chips are the Integer Processing Unit

(IPU), the Floating-Point Unit (FPU), and the Memory Management Unit (MMU). The IPU

consists of five functional modules that operate semi-autonomously to fetch, decode, exe-

19

20

fe

Instnjction
Memory

MMU DMMU
±

10 Bus

2
frfe

"DO

Bus Interface
Unit

Bus Interface
Unit

Floating Point Unit
Data
Memory

Memory
Management
Unit

Prefetch
Unit

Registei
File

I

:/n

Score
Board

KiAtU

KJI.

Reorder
Buffer

Lq Sq

dcOut

*

+
|pii

 1 n-

Pipelined
External
Data Cache

Integer Processor Unit

Figure 3.1 Processor Block Diagram

cute and retire instructions. The IPU is similar to the IBM-Motorola PowerPC 603 and 604

processors [Diefendorff94] in that it includes a Bus Interface Unit (BIU), an Integer Exe-

cution Unit (IEU), an Instruction Fetch Unit (IFU), and a Load Store Unit (LSU). In addi-

tion, the IPU has a dedicated Prefetch Unit (PFU) for data and instructions. The BIU

provides sustained transfer rates of 1.5 G-bytes per second over a 32-bit bidirectional bus

using a collision-based protocol. The clock is sent along with the data, which allows trans-

fers on both clock edges. The IFU fetches instructions either from a partially decoded on-

chip instruction cache or from secondary memory via the BIU and MMU. An instruction

miss will stall issue, but the back end of the pipeline, including active data references in the

LSU, can proceed. Static branch prediction is currently supported and a dynamic scheme

could be easily added to a future version of the design. The IEU contains 2 copies of the

ALU and register file, which are symmetric in order to simplify issue determination. The

LSU interfaces directly to a 3-cycle pipelined off-chip data cache and supports non-block-

ing load instructions via several miss-status holding registers. As a result, instruction issue

stalls for a load miss only if a subsequent instruction needs the result of the load. Further,

the LSU contains a 4-entry coalescing write cache to reduce store traffic across the BIU.

Since the MMU does not reside on the same chip as the IPU, the tags of the write cache also

acts as a micro-TLB, allowing store instructions to be retired quickly from the integer re-

order buffer. Finally, the LSU is responsible for transferring floating-point instructions and

data to the FPU. Figure 3.2 shows a more detailed view of the FPU, the characteristics of

which will be discussed in greater detail below.

3.3 Simulation Methodology

The floating-point simulator developed for this study is built upon a modified ver-

sion of Mike Smith's "xsim" trace-driven simulator [Smith87]. Changes were made to rep-

resent the Aurora IQ architecture, including dual issue of instructions, prefetching of

instructions and data, an appropriate memory subsystem, and other characteristics dis-

cussed in Section 3.2. Additions to the simulator were required to implement all FPU func-

tionality. Pixie, a program developed by MIPS Computer Systems Inc., is used to annotate

an application to be studied with assembly instructions that output information about mem-

ory references and branches. The simulator executes the "pixiefied" object file and pipes

the output back to the analysis routines of the simulator. Accurate information about the

state of the machine is used to determine cycle and instruction counts, as well as specific

Squeue fill

tJH>
Store Unit

Div Unit

Conversion Unit

hi"
*dju.t Exp Units

HI Registers
LO

Int Multiply

Main Control

Logic

Aurora HI FPU
Chip Layout

(see Appendix A)
mum

Figure 3.2 Aurora HI FPU Block Diagram

information about what causes stalls (full reorder buffer, result bus conflicts, data depen-

dencies, etc.). The SPECfp92 benchmarks are used to represent a typical scientific work-

load. These are comprised of 14 applications, some of which are more vectorizable than

others (refer to Table 3.1). Figure 3.3 shows the dynamic instruction breakdown for each

of the benchmarks. These applications are written in either FORTRAN or C, and most use

either single or double precision numbers exclusively. Since many experiments were to be

run and each program executed adds to the runtime, subsets of the benchmarks were often

used; the rationale for choosing to use certain benchmarks will accompany the discussion

of the experiment. All experiments included at least 50 million instructions and some had

as many as 1 billion instructions. A larger set of sizes was used for the various IPU resourc-

Table 3.1 SPECfp92 Benchmarks

Benchmark Commem.-

alvinn
Neural network used lor driving an automobile

- single precision
-C

doduc

Monte Carlo simulation of a nuclear reactor
- double precision
- non-vectorizable
- many subroutines
- FORTRAN

ear
Use of FFT's to simulate the human ear

- double precision
-C

fpppp

Quantum chemistry program
- double precision
- difficult to vectorize
- Fortran

hydro2d

Astrophysics program to solve for galactical jets
- double precision
- vectorizable
- 48% of time spent in one subroutine
-FORTRAN

mdljdp2
mdljsp2

Solves equations of motion for 500 molecules
- double or single precision
- vectorizable
-FORTRAN

nasa7

Seven floating-point intensive tests
- double precision
- various matrix operations and radix-2 FFTs
- FORTRAN

ora
Ray tracing through spherical and planar optics

- double precision
-FORTRAN

spice2g6

Analog circuit simulator
- double precision
- causes high data cache miss rates
- FORTRAN

su2cor

Quantum physics calculation of elementary particle masses
- double precision
- vectorizable
- 52% of time spent in one subroutine
-FORTRAN

swm256

Solution of a system of shallow water equations using finite
difference approximations

- single precision
- vectorizable
- 48% of time spent in one subroutine
-Fortran

24

Table 3.1 SPECfp92 Benchmarks, continued

Benchmark Comments

tomcatv

Analyzes geometric domains, such as airfoils and cars
- mixture of single and double precision
- highly vectorizable
- high data cache miss rates
- Fortran

wave5

Solution of Maxwell's equations and panicle equations of
motion

- single precision
- Fortran

es and was held constant throughout all experiments, as summarized in Table 3.2.

3.4 Evaluation Criteria

Three synchronization points in the design can cause the FPU to stall the IPU. Of

these stalls, the first occurs when the instruction (Iq) or load (Lq) data queue in the FPU

becomes full; this in turn depends on the various constraints that can prevent issue or dis-

patch from the queues. (The distinction between issue and dispatch will be discussed fur-

ther in the section on issue policies.) The second stall source happens whenever a branch-

on-FPU instruction awaits the completion of a corresponding floating-point compare in-

struction. Again, a full range of internal stall conditions can delay completion of the com-

pare instruction. The last type of stall occurs when the LSU write cache is full, and eviction

Table 3.2 IPU Resources Used for Simulation Experiments

Integer Reorder
Buffer Entries

8 Number Out-
standing Load
References

4

Number
Prefetch Buffers

16 Write Cache
Entries

8

Primary Data
Cache

64K Primary Instruc-
tion Cache

4K

Secondary Data
Cache

8M Secondary
Instruction
Cache

8M

Data Cache Line
Size

32 bytes Instruction
Cache Line Size

32 bytes

Primary Miss
Latency

17 cycles Secondary Miss
Latency

60 cycles

2^

wave5
tomcatv
swm256

su2cor
spice2g6

ora
nasa7

mdljsp2
mdljdp2
hydro2d

fpppp
ear

doduc
alvinn

■ FP load ■ FP ml

D FP store □ FP mf

■ FPadd BFPbdx

E3 FP mult □ INT load

■ FP div ■ INT store

D FP cvt ■ INT alu

■ FP cmp ■ INT mult

■ FP misc D INT div

E3 INT brancr

10 20 30 40 50 60 70 80 90 100

Figure 3.3 Dynamic Instruction Breakdown for SPECfp92

is prevented because one or more entries are waiting for floating-point store data. Other en-

tries may also be locked if an outstanding cache line has yet to be returned from the sec-

ondary memory system. In both of these cases, loads and stores will stall issue to the LSU

whenever it is not possible to evict a write cache entry.

The underlying mechanisms which trigger these 3 cases will be discussed in detail

in the analysis that follows. To facilitate comparisons, some combination of the following

metrics will be utilized:

1. The average rate of transferring floating-point instructions to the FPU. The interface

between the IPU and FPU supports a maximum rate of 2 instructions per cycle.

2. The frequency of issuing or dispatching more than one floating-point instruction per

cycle. An instruction is considered to have issued when all source operands are avail-

able and the instruction has been sent to a functional unit for execution. On the other

hand, dispatch occurs only for an out-of-order issue policy and refers to an instruc-

tion that is transferred from the queue to the reservation station of a given functional

unit; this occurs only when a source operand that is needed by an instruction is not

yet available. When the data becomes available, the instruction will proceed to issue

from the reservation station. For in-order issue, the maximum issue rate will be lim-

ited to 2, for reasons to be discussed below. For an out-of-order issue policy, it is

possible to have a peak issue equal to the number of functional units; maximum dis-

patch, and hence the maximum average throughput, will also be limited to 2.

3. The 3 external stalls mentioned above: lq/Lqfull, branch-on-FPV, and write cache

full due to outstanding floating-point stores. These high-level stalls will be decom-

posed into the various conditions that can prevent issue or dispatch. Floating-point

stalls per instruction (FSPI) is metric which combines all three stalls and will com-

plement basic CPI.

4. Average latencies and analysis of the components that comprise these latencies. For

each floating-point instruction type this will include the average latency for issue

and/or dispatch (depending on the issue policy), for results becoming available, and

for results writing back to the floating-point register file. The dispatch and issue

latencies are measured from the time a floating-point instruction issues in the IPU,

and indicate how long it takes for the instruction to proceed through the ALU and

LSU and finally dispatch or issue from the floating-point instruction queue. Stall

sources within the IPU include: 1) waiting for a full integer reorder buffer (floating-

point instructions must also reserve an integer reorder buffer entry in order to sup-

port precise memory exceptions), 2) waiting for access to the data cache busses, and

3) waiting for a full instruction or load data queue within the FPU. The latency for

results becoming available is measured to the time at which the result data is actually

written into the floating-point reorder buffer. The final latency, for writing results

back to the register file, is measured to the time at which an entry reaches the head

of the reorder buffer; this latency indicates the length of time that data resides in the

reorder buffer and infers the number of entries ahead in the reorder buffer and how

long they stall write-back to the register file. For floating-point load instructions, the

average latency is an indication of how often these memory references hit in the data

cache. Some of the experiments will also discuss the average issue point, as opposed

to the average latency to issue. The former indicates the average time taken by an

instruction to reach the point in the instruction queue where issue is possible. The

difference between issue point and issue latency is an indication of how long issue

27

is delayed due to constraints such as data dependencies and a full reorder buffer. The

average latency metric will be valuable in tracking where different types of instruc-

tions spend their time, from their issue in the IPU to completion in the FPU.

5. Utilization of the various busses shared by the IPU and FPU. Different events con-

tend for these busses, raising questions about whether a given bus organization can

become a bottleneck for performance.

6. Dynamic instruction counts of individual integer and floating-point instruction types.

Among other uses, this information on the frequency of instruction types can help

identify ways to more efficiently allocate resources.

7. Optimal sizes of instruction, load- and store-queues, and reorder buffer. This can be

determined dynamically for each experiment and benchmark by using a large num-

ber of entries and by keeping track of the number of entries that are actually utilized.

Since these sizes should be appropriate for peak floating-point activity, information

about the number of entries being utilized by a particular resource will be updated

only when this resource is accessed.

8. Resource cost. The register bit equivalent (RBE) model of Mulder [Mulder91] is

used to evaluate the resource cost of different microarchitectural features. This

model uses a normalized measure of area cost which is based on the size of a 1 bit

static latch. For GaAs DCFL, one static latch requires 16 transistors and corresponds

to an area of 3600 square microns. Since static RAM elements are denser, a single

cell is modeled as one half of a RBE. Additionally, the overhead associated with

sense-amplifiers and decoding logic is represented as a percentage of the array size.

The cost of various floating-point resources is shown in Table 3.3; these figures are

derived from actual layout obtained during chip design.

What should be considered a meaningful improvement in performance? In light of

the fact that processor performance increases by about 0.8% per week and 50% per year,

any additional feature must at least keep pace. Including both design and verification time,

if a feature requires a month to implement, it ought to add greater than 4% to overall per-

28

Table 3.3 Resource Cost in RBE Units

FPU Elemeni Cost in RBE

1 Floating-point Register File (32x64) 4.700

1 Scoreboard 3.600

1 Instruction Queue Entry 305

1 Load/Store Queue Entry 220

1 Reorder Buffer Entry 900

1 Reservation Station Entry (1/2 operands) 650/1030

Control Logic (25% overhead) 8,000

1 Add Unit (1 to 5 cycles) 5,000 to 1.250

1 Multiply Unit (1 to 5 cycles) 8,750 to 4,375

1 Divide Unit (10 to 30 cycles) 2,500 to 625

1 Conversion Unit (1 to 5 cycles) 2,500 to 1,250

formance. Further, if one considers the inherent inaccuracy of the various methods of pre-

dicting performance, hopefully only on the order of a few percent, a reasonable criteria

might be 10%; below this amount, an idea may not be worth implementing. Clearly other

issues, such as the impact on area (yield = cost), speed, and power are also equally impor-

tant.

3.5 Issue Policies

In an increasing order of performance gains, issue and completion policies are as

follows:

1) in-order issue, in-order completion (IOIO),

2) in-order issue, out-of-order completion (IOOO),

3) out-of-order issue, out-of-order completion (OOOO).

The first is the simplest, but achieves the worst architectural performance. In this

scheme, dependency checking needs to be done only between a decoded instruction and the

few instructions that are already in execution. Since results are completed in order, there is

29

no need for reordering prior to writing back to the register file. This simple policy stalls in-

struction issue whenever an instruction needs a different functional unit than thai used by

currently active instructions or when there is a conflict for a functional unit. The former

case is necessary since the functional units may have different latencies and this policy re-

quires instructions to complete in order. The latter case occurs in functional units that re-

quire more than one cycle to complete and allows only one active instruction at a time.

The second policy (IOOO) will stall the decode unit only when there is a functional

unit conflict or a source operand has not yet been determined. A scoreboarding approach

can be used to detect dependencies and conflicts. This approach can run into output depen-

dency problems (an earlier result overwrites a later one), making it necessary to add a

mechanism for reordering results, such as a reorder buffer. Also, since multiple instructions

can complete at the same time, arbitration for result busses is needed. The reorder buffer is

also needed to prevent erroneously repeating the execution of an instruction upon returning

from an exception.

Out-of-order issue attempts to increase look-ahead capability by moving a data-de-

pendent instruction past the decode unit and into an instruction window which resides be-

tween the decode and execute units. This issue policy increases the opportunity of finding

instructions without dependencies. Out-of-order issue is subject to an additional type of

data dependency, which occurs when a subsequent instruction changes a source operand of

a yet-to-be issued instruction (anti-dependency). To handle this, operands are forwarded to

the instruction window at the same time the instruction is sent to the window. However,

since operands may not all be ready, a mechanism is needed for forwarding results from the

execution units back to the instruction window. Out-of-order issue may also allow more

slip between the IPU and FPU by allowing instructions to be removed from the instruction

queue for three cases in addition to that of basic data-dependencies: 1) instructions which

need a busy non-pipelined functional unit, 2) both instructions in the issue pair need to use

the same functional unit, and 3) all result busses are busy. The apparent advantages of

0000 may in fact not be realized if some of these events occur infrequently.

Reservation stations are an alternative to a monolithic instruction window and mean

30

that the central window is split, not necessarily evenly, among the functional units. The reg-

isters at a reservation station can be organized in several ways. If more than one instruction

at a reservation station is ready to issue, a random approach would allow any one to be se-

lected. A simpler first-in-first-out (FIFO) ordering might be used, but with only a small per-

formance penalty since programs have a significant amount of inherent sequential ordering.

The main benefit of reservation stations is derived from the fact that instruction level par-

allelism (considering both integer and floating-point instructions) could support a peak is-

sue rate of about 6 and an average of about 3 to 4 [Johnson91]. To ensure that short term

demand does not stall the decode and issue unit when using a centralized window, as many

as 12 source operand busses (2 per instruction) and 12 instruction window read ports might

be needed. Reservation stations, on the other hand, split the instruction window among ex-

ecution unit, reducing the number of global busses and instruction window required to a

number closer to the average issue rate. Following are the trade-offs between using a cen-

tral instruction window and using reservation stations:

1. Interconnect area and register file ports versus storage space. Reservation stations

use more storage space, since they typically have more total entries than a unified

instruction window. This is offset somewhat by the fact that reservation station

entries need accommodate only the number of operands required by a given func-

tional unit. Also, reservation stations can result in less global interconnect because

dedicated busses are needed between the instruction window and each functional

unit. Instead, fewer common tristate busses can be used to direct operands from the

register file and reorder buffer to the functional units.

2. More complex issue logic versus duplicated issue logic. The central window is more

complex since:

a. It selects among a larger number of instructions.

b. It must consider all functional unit conflicts and arbitrate among them.

c. It must be able to issue more than one instruction per cycle.

d. All instruction entries must be of maximum width (the instruction and 2 or 3

31

operands). Reservation stations allow the register width to be tailored to the

needs of each functional unit.

The additional state needed for the reservation station entries can be quite large.

Two entries per functional unit would contribute about 10.000 RBE's, or an additional

25%, to overall chip area. To view this another way, the resources required to implement

OOOO are roughly equivalent to the difference between 2-cycle pipelined and a 5-cycle it-

erative multiply units. This trade-off for the multiply unit represents a 10% difference in

total machine performance (see Section 3.8.1), setting a standard for cost/benefit for other

architectural features, such as issue policy. In addition to the impact on area from out-of-

order issue, the requirement to forward results can be expensive. This policy adds complex-

ity in the following ways:

1. Each functional unit needs to be able to schedule result busses.

2. A tristate bypass bus is required for each load queue entry. For a 2-entry load queue,

2 additional 64 bit busses would need to be routed to each functional unit. Few things

are more expensive in terms of area than large busses, since overcell routing across

datapath sections tends to be quite congested. When the available routing region

over a datapath cell is filled, the routing spills over into the channels, which increases

the overall pitch of that datapath section and consequently the size of the entire chip.

3. A large number of comparators are needed within each reservation station entry to

check the result tag on each result bus. Simulations discussed below conclude that

only 2 result busses are needed. Since these are already being routed throughout the

chip, there should be little increase in interconnect due to forwarding of results. If

the number of reservation station entries per functional unit does not exceed 2, four

comparators would be needed per functional unit, and 24 comparators overall.

A top critical path for out-of-order issue may now consist of result bus arbitration,

determination of source operand availability, source bus arbitration, and functional unit ar-

bitration.

3.5.1 IOIO versus IOOO

A baseline architectural model which uses in-order issue and in-order completion

policies was chosen, and various design alternatives have been compared against this base-

line. A single register instruction buffer (IRB) is used to store instructions sent by the IPU,

allowing a small amount of IPU slip. Since results must complete in order, issue of two in-

structions to separate execution units is not allowed. This approach ensures that a later-is-

sued instruction does not complete before an earlier issued one. Successive instructions can

be issued to the same functional unit, to better take advantage of the pipelined nature of

most of the units; this form of IOIO is called "pipelined" in Table 3.4. The simulator sup-

ports variable latencies for each unit, and allows any unit to be blocking (not pipelined).

For example, the iterative algorithms used for division make the divide unit blocking in na-

ture, since only one divide instruction can be active at a given time. A register scoreboard

is used to determine data dependencies. The baseline clock cycle latencies for each func-

tional unit are: load = 1, store = 1, add = 3, multiply = 5, divide = 19, conversion = 2.

Results for the baseline FPU are shown in Table 3.4. Many criteria could be used

for measuring the effectiveness of an architectural feature; parts of this study will use float-

ing-point stalls per instruction (FSPI) and overall cycles per instruction (CPI). The former

is a more direct indication of the improvement of the FPU alone, whereas the latter tends

to show the impact on overall performance. Even for programs where floating-point activ-

ity dominates, the majority of work is still done in the integer unit, so fairly large reductions

in FSPI are needed for significant improvements in CPI. Figure 3.4 shows the ratio of inte-

ger to floating-point instructions for the benchmarks.

3.5.2 Dual Transfer and Issue of Instructions

The design of the IPU for transferring floating-point instructions and data is some-

what constrained by pin limitations. Pins that are available for transfers (without adding

busses to the IPU) are the data cache input and output busses (each 64 bits), and the data

cache tag bus (20 bits). These busses allow a potential transfer of two floating-point instruc-

33

Table 3.4 IOIO Baseline Performance

IOIO
(not pipelined'

IOIO
(pipelined:

Benchmark
(50M Instructions)

FSPI CPI FSPI CPI

alvinn 0.000 1.5697 0.000 1.5695

doduc 0.605 2.2460 0.374 1.8917

ear 0.593 1.6657 0.291 1.3620

fpppp 0.526 2.5826 0.290 1.6400

hydro2d 0.624 1.8912 0.480 1.6154

mdljdp2 0.840 1.8771 0.618 1.6464

mdljsp2 0.852 1.8650 0.686 1.7172

nasa7 0.836 2.0442 0.621 1.7704

ora 0.705 2.1715 0.232 2.0405

spice2g6 0.113 1.8247 0.246 1.8084

su2cor 0.646 2.1038 0.321 1.7100

swm256 0.927 2.1441 0.744 1.8062

tomcatv 0.901 2.5778 0.645 1.8724

waveS 0.828 1.9666 0.405 1.8860

Avg Arithmetic 0.547 2.038 0.422 1.738

Avg Harmonic 0.643 1.999 , 0.425 1.722

% Change -33.9 -13.9

tions per cycle. The IPU cannot dual-issue a floating-point instruction and an integer in-

struction which both reference the data cache.

Dual issue of floating-point instructions in the FPU is an indication of the amount

of parallelism available within the instruction stream. Among the constraints which can

prevent dual issue are:

1. functional units conflicts,

2. true data dependencies,

3. blocking functional units that are busy,

4. result bus conflicts,

34

alvinn ^1 i i
doduc !■■

ear ■^■■■1
fpppp ^—

hydro2d HH
mdljdp2 ^m
mdljsp2 ■■

nasa7 B^H
ora ^H

su2cor ^H

tomcatv ■■
wave5 ■■

10 15 20 25

Avg Harmonic = 2.41

Avq Arithmetic = 4.52
Figure 3.4 Ratio of Integer to Floating-Point Instructions for SPECfp92

5. the instruction queue containing fewer than N instructions, where N is the

degree of multiple issue,

6. reorder buffer being full.

As the second and fifth columns of Table 3.5 show, there is an improvement of 15%

in CPI for dual transfers and dual issue of floating-point instructions over that of single

transfers and single issue. Not surprisingly, the middle 2 columns of this table show little

improvement over a single transfer and issue policy, since either the peak issue rate or the

peak transfer rate is limited to only one instruction per cycle. Table 3.6 shows a fairly broad

range for how often dual transfers are utilized. Exactly when a dual transfer occurs and

what pair of instructions is involved is as important as the frequency; this will be developed

later in the discussion of instruction sequences which contain floating-point compares.

Because of the additional complexity of issuing more than 2 instructions per cycle,

higher order issue was not examined. Based on the instruction traces for the benchmarks

listed, floating-point loads are the most common (24.0%), while addition/subtraction in-

35

Table 3.5 Dual Transfers and Multiple Issue of 2 Instructions

Benchmark
(50M Instructions)

Single
Transfer

Single Issue
(CPI)

Dual
Transfer

Single Issue
(CPI)

Single
Transfer

Dual Issue
(CPI)

Dual
Transfer

Dual Issue
(CPI)

alvinn 1.569 1.5686 1.5697 1.327

doduc 1.655 1.6551 1.6421 1.431

ear 1.228 1.2287 1.1706 1.005

hydro2d 1.541 1.5406 1.5321 1.287

mdljdp2 1.540 1.5396 1.5339 1.390

nasa7 1.105 1.1058 1.1059 0.953

ora 1.862 1.8624 1.8558 1.525

spice2g6 1.841 1.8409 1.8296 1.624

su2cor 1.509 1.5084 1.4949 1.231

Avg Harmonic 1.499 1.500 1.484 1.272

Avg Arithmetic 1.539 1.539 1.526 1.308

% Change from single
transfer, single issue 0.0 -1.0 -15.1

Table 3.6 Dual Transfer Utilization

Benchmark % Transfers Involving 2
Floating-Point Instructions

doduc 19.3

ear 10.8

fpppp 21.7

hydro2d 14.9

nasa7 30.6

spice2g6 5.0

su2cor 21.0

swm256 31.2

tomcatv 35.5

Avg Harmonic 15.0

Avg Arithmetic 21.1

36

structions (11.39c) are equally as likely as multiply instructions (9.69c). On the other hand.

divide and conversion instructions occur quite infrequently (0.79c and 3.99?, respectively).

The average issue rate for an IOOO policy is 1.26, as shown in Figure 3.5. This raised the

question of whether there is enough parallelism to support two add units. Simulation sug-

gests that the addition of a second add unit results in a negligible decrease in CPI (< 19c).

However, since the benchmarks are compiled for a machine with only one add unit (MIPS

R2000/R3000) it would be surprising to find many sequences which contain two successive

instructions that both use the same functional unit; consequently, the benefit of implement-

ing two add units should probably be examined further, in conjunction with code reorder-

ing.

Multiple issue of two instructions incurs some hardware cost, including two addi-

tional read ports on the register file and reorder buffer. However, a sense-amplifier based

register file is used in the FPU; this design should allow additional read ports without too

large of a penalty in speed or area. The reorder buffer will have a small number of entries

so its performance will not suffer much from having two additional read ports. The instruc-

tion queue also needs an additional read port to allow access to the instruction immediately

below the head of the queue. Additional source operand busses are needed, as well as some-

what more complex control for instruction decoding and issue. Extra write tag ports are re-

Avg Harmonic = 1.26

Avg Arithmetic = 1.27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CPI

Figure 3.5 Issue Degree for IOOO Policy

37

quired for the reorder buffer and also for the tag lookup table. Many of these issues will be

revisited in Section 3.11.1, which discusses the merits of a simpler design for the FPL'.

3.5.3 IOOO versus OOOO

Out-of-order issue changes the issue paradigm. In out-of-order issue, instructions

are allowed to dispatch from the instruction queue to a reservation station for the appropri-

ate functional unit. The constraints for dispatch are now:

1. two, one, or no valid Iq entries,

2. free reservation stations for the required functional unit, and

3. free reorder buffer entries, which must be reserved at dispatch in order to

retain the in-order sequence of the program.

To limit the number of reorder buffer and register file ports, the degree of dispatch

is limited to two. Note that dispatch can occur in spite of conditions which would stall an

IOOO policy, including the operands being unavailable, both instructions needing to use

the same functional unit, or the instruction needing a blocked functional unit. The actual

issue of an instruction now occurs within a reservation station and the constraints are:

1. a reservation station entry is valid, meaning that all necessary operands have

been forwarded to the entry,

2. a non-pipelined functional unit is not blocked with a prior instruction, and

3. a result bus is available for when the instruction completes.

An upper bound on the performance gained by using an OOOO policy for both in-

teger and floating-point instructions can be derived by considering both the percentage of

cycles that a dual issue occurs and the percentage of instructions that are dual issues. Figure

3.6 shows these figures for an IOOO Aurora HI model, as well as for a DEC 7000 AXP

system (which is not an out-of-order issue machine) [Cvetanovic94]. Assuming middle

range figures, such as for "fpppp" for the Alpha, dual issues occur 10% of the time and ac-

count for 40% of all instructions. For 100 issues, it means there are 40 dual issues, 60 single

38

Aurora 111

Dec Alpha

60 70 10 20 30 40 50

D Dual Issues (% Instructions)
■ Dual Cycles (% Time)

Figure 3.6 Percentage of Dual Issue Instructions and Cycles

issues, and 400 cycles overall. Further, this means that there are 300 NOP cycles due to

stalling. For the best case scenario, if an OOOO policy turns all of these single issue cycles

into dual cycles, there would be a savings of 30 cycles, or 7.5%. This analysis assumes that

NOP stall cycles are relatively constant, being caused by memory system latencies.

Table 3.7 shows this upper bound across all of the benchmarks. The Alpha improvements

39

are quite low since very few cycles actually issue 2 instructions, suggesting long memory

latencies. The Aurora III estimates include dual issue of both integer and floating-point in-

structions; however, an OOOO policy will be considered only for the issue of floating-point

instructions. Consequently, there will be fewer dual issue cycles and the performance ben-

efit will be lower than suggested by Table 3.7.

For this initial set of experiments, all resources were set to a maximal amount

(queues and reorder buffer having 20 entries and reservation stations having 15 entries), in

order to identify an upper bound on the performance difference between the two issue po-

lices. Some interesting results, evident from the initial experiments, are summarized in

Table 3.8 to Table 3.10. First, the 0000 policy actually has worse performance than the

Table 3.7 Upper Bound for OOOO Performance Improvement

Benchmark
(50M

Instructions)

Aurora III
(% gain)

DEC 7000 Alpha
(% gain)

alvinn 25.138 5.391

doduc 23.575 6.121

ear 33.396 11.077

fpPPP 35.277 6.476

hydro2d 25.276 5.283

mdljdp2 24.854 5.318

mdljsp2 22.532 7.091

nasa7 33.364 6.457

ora 23.342 8.121

spice2g6 21.319 6.395

su2cor 27.208 5.500

swm256 29.797 10.149

tomcatv 26.932 5.765

waveS 21.864 3.536

Avg Harmonic 26.043 6.132

Avg Arithmetic 26.705 6.620

40

IOOO policy, for 3 of the 4 benchmarks. Examining the 3 high-level stall sources for the

FPU, it is clear that the most significant source involves branches that must wait for float-

ing-point compares. Each of the benchmarks, except for spice2g6. see approximately one

additional cycle of latency before a compare instruction issues from a reservation station

(0000) versus issuing directly from the queue (IOOO). In modeling the 0000 policy,

an initial assumption was made that every instruction must first pass through a reservation

station prior to issue. In other words, even if all necessary operands are ready, the instruc-

tion is first dispatched to the reservation station of the appropriate unit. This approach in-

troduces the unnecessary additional cycle of latency evident in Table 3.10. An obvious

solution would be to allow issue to proceed directly from the instruction queue if both op-

erands are valid. This adds a bit of complexity to the dispatch logic and also an additional

mux input for each operand to the input stage of each functional unit. Not all types of in-

structions suffer from this additional cycle of latency, as seen in Table 3.11 for the "hy-

dro2d" benchmark. Still, it is probably more efficient to allow this fast bypass of

reservation stations for all instructions than to recognize only a few cases. The impact of

doing so is shown in Figure 3.7. The average drop in CPI across the benchmarks is a modest

1.2%, though some applications see as much as 5.4% improvement.

While an IOOO policy sees a delay from the time the reorder buffer is written to

when a result is retired, the effect is even worse for an OOOO policy, which explains in part

why the measured gains in performance for OOOO are quite small (or even worse).

Table 3.11 shows this same behavior for instructions in addition to floating-point corn-

Table 3.8 Issue Policies (IOOO vs OOOO)

Benchmark
(50M Instructions)

IOOO
(CPI)

OOOO (no fast issue)
(CPI)

OOOO (fast issue)
(CPI)

ear 1.005 0.963 0.951

fpppp 1.024 1.030 1.034

hydro2d 1.287 1.347 1.308

spice2g6 1.624 1.644 1.632

Avg Harmonic 1.189 1.1905 1.178

Avg Arithmetic 1.235 1.2461 1.231

41

Table 3.9 High Level FP Stall Sources

Benchmark
(50M Instructions; lq/Lq Full bclx Wait

Wnie Cache
Eviction

ear (IOOO) V.97 9.99 0.00

(OOOO) 3.02 13.47 0.00

fpppp (IOOO) 1.31 1.43 0.01

(OOOO) 1.42 1.64 0.01

hydro2d (IOOO) 1.90 21.92 0.00

(OOOO) 0.70 35.77 0.00

spice2g6 (IOOO) 0.00 17.76 0.00

(OOOO) 0.00 18.90 0.00

Table 3.10 Latencies for Floating-Point Compare Instructions

Benchmark
(50M Instructions)

avg latency avg ROB ready avg issue avg dispatch

ear (IOOO) 8.175 8.174 5.175

(OOOO) 10.275 9.135 6.136 4.129

fpppp (IOOO) 12.712 11.666 8.689

(OOOO) 14.421 12.495 9.515 4.061

hydro2d (IOOO) 11.032 10.396 7.396

(OOOO) 12.656 11.057 8.057 4.353

spice2g6 OOOO) 14.579 14.579 11.579

(OOOO) 15.640 14.171 11.171 4.481

doduc 1 IL

ear 1 &

fpppp 1 ■

hydro2d 1 ■

nasa7 1

spice2g6 H

su2cor IB

swm256 I ^L

tomcatv 1 H
i ,...,... | .. i | i i i

OOOO

Avg Harmonic = 1.122 Change = 1.2%

Avg Arithmetic = 1.164 Change = 1.1 °/

IOOO
Avg Harmonic = 1.137

Avg Arithmetic = 1.175

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

CPI

Figure 3.7 Comparison of IOOO and fast OOOO Policies

Table 3.11 Avg Latencies of Various Floating-Point Instructions for Hydro2d

Functional Unit
Instruction

count
9c totaJ

instructions
Avg

latency
Avg ROB

ready
Avg issue

A\g
dispatch

LOAD (IOOO) 12920135 45.90 16.643 13.440 12.256

(OOOO) 17.850 9.484 8.485 6.630

STORE (IOOO) 4299870 15.30 16.496 13.099 11.972

(OOOO) 17.707 10.263 9.325 7.135

ADD (IOOO) 3124150 11.00 19.899 16.754 13.481

(OOOO) 20.894 14.008 11.094 7.658

MULT (IOOO) 2736150 9.70 19.210 14.900 12.752

(OOOO) 19.869 12.663 10.745 6.953

LOADXTRA (IOOO) 2268717 8.60 8.932 8.315 7.174

(OOOO) 10.694 7.788 6.791 4.800

COMPARE (IOOO) 2268717 8.00 11.032 10.396 7.396

(OOOO) 12.656 11.057 8.057 4.353

DIV (IOOO) 434402 1.50 41.043 41.041 21.489

(OOOO) 38.902 37.596 18.638 8.514

CONV (IOOO) 42 0.00 6.643 6.643 4.643

(OOOO) 7.571 6.571 5.619 4.619

pares. However, only store instructions share the same constraint as compares in needing

to wait until they reach the head of the reorder buffer before their results can be used (the

reason is discussed in Section 4.5); other instructions can bypass their results in the same

cycle the reorder buffer is being written. Because more instructions have moved past the

instruction queue, more entries in the reorder buffer are necessary, as seen in Figure 3.8

These instructions, and their corresponding latencies for completion, delay the time at

which compares and stores can be retired. Having more such entries precede a compare

simply makes the compare wait longer to complete. The ability to retire more than one re-

order buffer entry per cycle would help alleviate this problem, but might require an addition

register file write port. For GaAs sense-amplifier-based RAM's, write ports are expensive

compared to read ports. Some floating-point instructions, such as compares and stores, do

not produce results that are written to the register file, so it should be possible to allow two

reorder buffer entries to be retired if one or more are these types of instruction. Consequent-

ly, an OOOO policy not only adds state in the form of reservation stations but also by re-

43

1 !

r^™ 1 1 1 1
fpppp p J™

hydro2d 10
 1

nasa7 1

spice2g6 Bff

su2cor 1

-r^^^^ -IT-I- -r-rn-

0000
Avg Harmonic = 8.08

Avg Arithmetic = 11 45

1000

Avg Harmonic = 3.81

Avg Arithmetic = 7.16

0 2 4 6 8 10 12 14 16 18

Number of Entries
Figure 3.8 Reorder Buffer Entries Needed for IOOO and OOOO Policies

quiring a larger reorder buffer.

Another effective approach to minimizing stalls due to floating-point branches in-

volves something external to the FPU, the memory system. Even for data cache hits, a 3

cycle latency is costly, underscoring the importance of a technology supporting large on-

chip memory structures. Some of this latency might be hidden by better compiler support.

The Aurora III architecture allows only one load to be issued per cycle. Dual issuing loads

might be justified, though doing so may require either a dual-ported or interleaved first-lev-

el data cache. Using both hardware and software compiler approaches, a processor should

issue load instructions to the memory system as soon as possible. The above analysis as-

sumes a 17-cycle latency for a cache miss, which is probably optimistic. The overhead as-

sociated with the Aurora HI collision-based bus interface unit was found to add 6 to 7 cycles

to the overall latency. Collisions occurred more frequently than anticipated, which in-

creased the overall cost of handling a memory reference. Some of these benchmarks thrash

the data cache, as is evident in the average load latencies shown in Table 3.12. The latency

for a load which hits in the cache should be approximately 6 cycles (recall that these laten-

cies are measured from when the instruction issues), whereas for a cache and prefetch miss

the latency would be 20 cycles. When the average load latency is in the range of 8 to 11

cycles, as seen for most entries in the tables the majority of loads are hitting in the cache.

44

A final comparison of IOOO and 0000 policies contrasts the average issue rate of

each. For an IOOO policy, the peak issue rate is 2. whereas for an 0000 policy the peak

can be higher since issue is possible from the reservation stations at each functional unit.

The average issue rate for both policies cannot exceed 2, since the peak dispatch for 0000

is 2. In order for one policy to surpass the other, the average issue rate must be higher.

Table 3.13 shows the issue rate as a function of total issues and number of issues per cycle.

The latter parameter indicates how often issue occurs, while the former makes the nature

issue evident. The number of issues per cycle is slightly higher for the 0000 policy, how-

ever the average issue rate per issue is lower. The product of the two is represented in the

third column; there is little if any difference between the two policies. This result correlates

well with the very small change in CPI that has been observed; an 0000 policy simply

does not succeed in increasing the number of dual issue cycles.

The discussion up to this point has focused on the upper bound on performance af-

forded by out-of-order issue and has assumed a large resource budget. Consequently, none

of the experiments showed a significant stall component due either to full queues or write

cache eviction. Only about half of the benchmarks were limited by floating-point branch

stalls. When the resources are reduced to a more reasonable level (Iq = 6, reorder buffer =

Table 3.12 Breakdown of Average Load Latencies (IOOO Baseline)

Benchmark
(50M Instructions)

Avg Latency
(cycles)

Avg Reorder
Buffer Ready

(cycles)

Avg Issue
(cycles)

Avg Issue Point
(cycles)

doduc 11.744 7.956 6.901 5.897

ear 11.242 9.136 7.992 7.377

fpppp 11.130 6.542 5.425 4.541

hydro2d 13.890 10.779 9.623 7.866

nasa7 16.397 10.889 9.761 8.505

spice2g6 14.371 13.367 12.271 9.116

su2cor 16.198 11.895 10.772 9.271

swm256 15.993 11.594 10.394 9.096

tomcatv 17.924 13.139 11.973 10.272

45

Table 3.13 Issue Rate for IOOO and OOOO Policies

Benchmark
(50M Instructions)

Issue Rate per
Issue

Issues per Cycle
Issue Rate per

Cycle

doduc (IOOO) 1.23 0.34 0.42

(OOOO) 1.13 0.37 042

ear (IOOO) 1.30 0.37 049

(OOOO) 1.23 0.41 0.51

fpppp (IOOO) 1.22 0.65 0.80

(OOOO) 1.17 0.68 0.80

hydro2d OOOO) 1.20 0.36 0.44

(OOOO) 1.12 0.38 0.42

nasa7 (IOOO) 1.19 0.78 0.93

(OOOO) 1.09 0.85 0.92

spice2g6 (IOOO) 1.08 0.06 0.07

(OOOO) 1.01 0.07 0.07

su2cor (IOOO) 1.31 0.39 0.52

(OOOO) 1.15 0.45 0.52

swm256 (IOOO) 1.54 0.55 0.85

(OOOO) 1.23 0.71 0.87

tomcatv (IOOO) 1.40 0.59 0.82

(OOOO) 1.24 0.67 0.82

8, reservation station entries = 2), the effect on CPI for both policies is still small, as sum-

marized in Table 3.14. There is only a modest impact on performance due to limiting re-

sources; this is not surprising since the sizes of queues, reorder buffer, etc., were derived

from the simulations. The difference between the two issue policies is less than 3%. A ques-

tion arises about whether the stall profile for the baseline architecture is the same as for the

larger one, considering the change in CPI is small. Table 3.15 shows that the profiles are

similar, with some increases in queue and floating-point branch stalls for the baseline FPU.

3.5.4 Reservation Station Selection Policy

For an OOOO policy, a choice must be about how to select an instruction to issue

from a reservation station when more than one instruction is ready. A simple approach

would be to examine instructions in a first-in first-out (FIFO) ordering, which is easy to im-

46

Table 3.14 Resource Allocation for IOOO and OOOO Policies

Benchmark
IOOO
Large
(CPI)

IOOO
Base
(CPh

Speedup
OOOO
Large
(CPI)

OOOO
Base
(CPI)

Speedup

doduc 1.4309 1.4836 1.0368 1.4136 1.4767 1.0446

ear 1.0049 1.0204 1.0154 0.9507 0.9546 1.0041

fpppp 1.0236 1.0362 1.0123 1.0338 1.0920 1.0563

hydro2d 1.2866 1.3653 1.0612 1.3077 1.3538 1.0353

nasa7 0.9527 1.0368 1.0883 0.9516 1.0913 1.1469

spice2g6 1.6238 1.6464 1.0139 1.6322 1.6325 1.0002

su2cor 1.2309 1.2859 1.0447 1.2170 1.2986 1.0671

swm256 0.9404 1.0587 1.1259 0.8991 1.0477 1.1653

tomcatv 1.0811 1.2813 1.1852 1.0716 1.2916 1.2053

Avg Harmonic 1.137 1.212 1.062 1.122 1.215 1.076

Avg Arithmetic 1.175 1.246 1.065 1.164 1.249 1.081

plement via the head pointer of a queue. An alternative might involve choosing at random

one instruction from the pool of all ready instructions. This scheme may be slightly more

difficult to implement since all entries in a reservation station would need to be examined

concurrently. The logic would need to identify those instructions that are ready and then

select one instruction to issue. It is possible that this additional logic would contribute ad-

versely to the path-length of overall instruction issue, though the actual number of reserva-

tion stations needed per functional unit would be quite small. Table 3.16 summarizes the

results for both of these polices and shows that there is very little difference between the

two. In fact, for 4 benchmarks shown a FIFO prioritization yields slightly better perfor-

mance, though the difference is not significant. This result is consistent with intuition be-

cause the instruction whose result is needed the most is the oldest active instruction, which

is the first instruction in the queue.

47

Table 3.15 Resource Allocation and High Level Stall Sources (IOOO Policy)

Benchmark
(50M Instructions)

FSPC (total)
(% cycles)

Iq/Lq Full
Or cycles)

bclx Wait
(9r cycles i

Write Cache Eviction
(9r cycles)

doduc (large) 22.5 2.6 19.9 0.0

(base) 26.4 8.9 17.5 0.0

ear (large) 20.0 10.0 10.0 0.0

(base) 21.2 10.2 11.0 0.0

fpppp (large) 3.7 1.3 1.4 0.9

(base) 5.4 3.3 1.5 0.5

hydro2d (large) 33.8 1.9 31.9 0.0

(base) 40.1 7.8 32.2 0.0

nasa7 (large) 12.6 9.8 2.8 0.0

(base) 23.4 20.8 2.6 0.0

spice2g6 (large) 17.8 0.0 17.8 0.0

(base) 18.8 0.0 18.8 0.0

su2cor (large) 12.4 3.2 8.3 0.9

(base) 20.8 15.3 5.3 0.1

swm256 (large) 19.1 12.0 6.5 0.6

(base) 32.0 28.5 3.3 0.2

tomcatv (large) 10.8 1.9 8.9 0.0

(base) 34.4 26.9 7.5 0.0

Table 3.16 Reservation Station Entry Selection Policy

Benchmark
(50M

Instructions)

FIFO
(CPI)

Random
(CPI)

Speedup

ear 0.9497 0.9507 1.0011

fpppp 1.0341 1.0338 0.9997

hydro2d 1.3057 1.3077 1.0015

spice2g6 1.6325 1.6322 0.9998

Avg Harmonic 1.177 U78 1.001

Avg Arithmetic 1.230 1.231 1.001

48

Table 3.17 Branch-on-FPL Stalls (IOOO Policy)

Benchmark
(50M

Insiructions)

9r of Total
Cycles

doduc 19.9

ear 9.9

hydro2d 31.9

mdljdp2 41.8

mdljsp2 45.6

ora 8.9

spice2g6 17.8

su2cor 8.3

swm256 6.5

tomcatv 8.9

wave5 34.1

3.6 Improving The Latency of Floating-Point
Compare Instructions

Table 3.17 and Table 3.18 show the importance of synchronization stalls due to

floating-point branches. Table 3.17 identifies the benchmarks which have the highest per-

centage of compare instructions. Table 3.18 shows the average latencies for floating-point-

compares in these benchmarks, including a breakdown of where the latency occurs ("mdl-

jsp2" is not included, since it has similar behavior to "mdljdp2"). The difference between

Table 3.18 Compare Latencies for High Branch-Stall Benchmarks

Benchmark
(50M

Instructions)

Avg Stall Cycles
per Floating-
Point Branch

Avg Latency
Avg ROB

Ready

Avg Issue
(Issue takes

place)

Avg Issue Point
(Issue can take

place)

doduc 8.97 11.155 9.671 6.691 4.726

hydro2d 9.70 12.015 10.378 7.378 6.272

mdljdp2 8.61 10.173 8.642 5.642 3.428

spice2g6 14.60 15.562 14.562 11.563 11.035

wave5 10.56 14.608 13.281 10.281 7.408

49

the average number of stall cycles per floating-point branch (column 2) and the average la-

tency for a compare instruction (column 3) can be explained by instructions which inter-

vene between the compare and branch; on average, 1.4 instructions fall between the

compare and branch across these five benchmarks. Latency to the issue point is an indica-

tion of how significant data cache misses are for a particular benchmark; "spice2g6" has

both the highest issue point latency and the highest data cache miss rate. In the "wave5"

benchmark, load and compare issue are further delayed by prior instructions in the queue.

These latencies are quite large; reducing them is an important part of optimizing and FPU

design.

The Aurora III design allows only one floating-point compare to be outstanding at

a time to simplify the interface between the IPU and FPU. Allowing more than one compare

instruction to be active at a time might seem to offer the potential of reducing branch-on-

FPU stalls. However, a second compare is seldom encountered while a first one is still ac-

tive. This is explained by the fact that there is a one-to-one pairing of branch-on-compare

with the actual compare; issue of the branch will stall until the compare is resolved.

Table 3.10 shows that about four cycles of latency are due to the time required for

the floating-point instruction to reach the instruction queue in the FPU. The IPU has pipe-

line stages for register fetch (RF), alu execution (ALU), and load-store unit execution

(LSU). Contention for the data cache bus can add more latency but this tends to happen in-

frequently (see Section 3.7.4). Dispatch from the queue is also constrained by the three con-

ditions listed in Section 3.5.3; however, since in this set of experiments there are a large

number of reservation stations and reorder buffer entries, it is unlikely that dispatch will

stall for these reasons.

One could move the transfer of floating-point instructions up in time to the same

point at which issue occurs in the IPU, thereby saving the two cycles that correspond the

ALU and LSU pipe stages. In this approach, one would have to add dedicated busses be-

tween the IPU and FPU for instructions and data (three 64 bit busses) to avoid stalling the

front end of the machine. The current Aurora El design decouples the front end of the IPU

pipeline (IC, RF, ALU) from the longer-latency backend (LSU). When a floating-point in-

50

struction transfer is stalled while a higher priority event takes place (such as a cache fill).

the issue of integer instructions is not inhibited. As will be discussed later, a desire to limit

pin count was a key factor in choosing the current organization. However, it is not clear that

moving the transfer of floating-point instructions forward in time would necessarily result

in lower latencies for compares. The merit of an early transfer point depends upon how of-

ten a floating-point compare is preceded by a floating-point load. A load instruction must

still pass through the RF and ALU stages, and will see a three-cycle latency for data to be

returned from the off-chip pipelined data cache (assuming a cache hit). If this pattern occurs

often, the latency for compares will be roughly the same as in the current system, regardless

of an early transfer. For the benchmarks which are limited by floating-point branches, ex-

amining the characteristics of the most commonly occurring compares reveals the follow-

ing sequences:

1:

lwcl $f4

lwcl $f5 <= $f4 and $f5 comprise a single double-precision register

integer op

mov.d $ f0,$f4 or sub.d $f0,$f2,$f4

cmp $f0,$f2

xx

bclx

2a:

lwcl $f4

lwcl $f5

integer op

cmp $f4,$fl0

xx

bclx

51

Table 3.19 Common Compare Instruction Sequences

2b:

Benchmark
Compare
Sequence

Tt Totai
Compares

doduc 1 44.5

hydro2d 1 18.0

2A 24.0

3 24.0

mdljdp2 1 37.8

3 37.8

wave5 2A 40.0

2B 21.0

3 29.0

spice2g6 2A 94.5

lwcl $f4

lwcl $f5

integer op

integer op

cmp $f4,$fl0

xx

bclx

integer op

cmp $f8,$f2

integer op

bclx

Table 3.19 shows which sequences are prevalent for the five benchmarks in ques-

tion. The first important observation about these sequences is that they fall into three cate-

1 RF|

IALU

| lwcl/nop| IcrnpTKlxl

|lwcl/nod 1 cmp|

[LSLJ
Memory System #1
3 Cycle Latency | dcO|

| Iwclj |cmp|

| lwclj

| del | |lwcl)

1 RF|

lÄig

jbclxj

[=1

|bchj

1—1

| Iwclj

Ibclxj |bclx|

[=1

|lwcl/nop| |cmp/bclx| |bclx|

FPU#1
|lwcl/nop| | cmp|

Aurora III ILSU | Iwclj Icmpj 1=1 bd 1 — 1

fRFl

Gil

[7wd]

jbclxj

|lwcl||

| lwcl||

[bci^

pwcill

flwdjl

j bcljj

| lwcljl

|cmp|

Ibclxj

|cmp|

FPU #2
Early Transfer

|lwcl/nop| Icmp/bclxl |bclx|

llwcl] | lwcljl

Time
T«^

Figure 3.9 Timing For Aurora III Memory System and Early Instr. Transfer

gories. Sequences in group 1 have two intervening instructions between the load and

compare. One of these instructions is a floating-point operation the source of which is the

load and the result of which is used by the compare. Group 2 sequences have either one or

two intervening integer instructions. The group 3 sequences are characterized by the fact

that the operands needed by the compares are readily available and no issue stalls occur due

to data dependencies. For all groups, on average 1.08 instructions fall between the load and

compare.

Note that the sequence of a load followed immediately by a compare does not ap-

pear; this case cannot occur in the MIPS architecture because of the load delay slot. Figure

3.9 contrasts the way a load-compare sequence progresses though the current Aurora HI ar-

chitecture and a design which moves floating-point transfers forward in time. The compare

cannot be issued in either case until the fifth cycle; the early transfer design holds the com-

pare in the instruction queue longer. Having more instructions between the load and com-

pare delays the arrival of the compare at the instruction queue, and increases the chance of

5"*

1
1 I

|b,H

1 —1
|cmp|

| lwcl/nop| |cmp/bclx| |bcl^

Memorv Svstem *
1 Cycle Latency

|lwcl/nop 11 cmp|

| lwcll

ran

1 RFl

IALU

|lwcl|

|bclxj |bclxj

l=J

|lwcl/nop| Icmp/bclxl |bclxj

FPU#1
|lwcl/nop| | cmp|

Aurora III
ILSU |lwcl) |cmp| [=]

HT1

fRFl

|lwcl|

[bcTx]

|cmp|

IbcljJ FPU #2 |lwcl/nop||cmp/bclx| | bclxj
Early Transfer,—,—k

I 'ql [Twcl| Qwcj]| fl^cTJI |cmp|

Time *"

Figure 3.10 Timing For 1-Cycle Memory System and Early Instr. Transfer

benefitting from an earlier instruction transfer. With two intervening instructions in an ear-

ly transfer design, the compare reaches the queue one cycle before the load issues. In the

current design, the compare would reach the queue one cycle after the load issues, thus

costing one cycle of latency. With three or more intervening instructions, the penalty is the

two cycles corresponding to the instruction passing through the ALU and LSU pipe stages.

Compare latency can be improved in several ways in order to reduce branch-on-

FPU stalls. Much of the above discussion depends on the Aurora HI architecture and a

three-cycle latency for a cache hit. A technology which supports a large on-chip single cy-

cle cache would benefit more from an earlier transfer of floating-point instructions (see Fig-

ure 3.10). Compilers could also improve the performance of early floating-point instruction

transfer by trying to schedule more instructions between the load and compare to better fit

the parameters which affect FPU stall cycles. Table 3.20 summarizes the results for three

ideas of early instruction transfer, faster primary data cache, and better code scheduling.

For single issue, less distance is needed between the load and compare to benefit from an

early transfer point. As the table shows, a faster memory system is also a requirement for

54

Table 3.20 Branch-on-FPU Stall Cycles for Different Organizations

Single
Issue

Dual
Issue

FPU Configuration
Interval

of 1
insir.

Interval
of2

instr.s

Interval
of 3

instr.s

Interval
of 1
instr.

Interval
of:

instr.s

Interval
of 3

instr.s

Interval
of 4

instr.s

Memory
System

#1 (Aurora III)
3 2 2 5 4 4 3 3 Cycle

Latency

#2 (Fast Transfer) 3 1 1 5 4 4 3

#1 (Aurora III)
2 2 2 3 2 3 i 1 Cycle

Latency

#2 (Fast Transfer) 1 0 0 3 2 2 1

achieving the greatest benefit of an early transfer. A dual issue processor needs more useful

instructions to be scheduled between the load and compare to have the desired effect, be-

cause it retires them in pairs. An early transfer point results in the best performance, but

only if supported by both better code scheduling and a faster memory system. These op-

tions also impact the number of entries needed for the instruction queue, as shown in

Table 3.21. In these cases, the early transfer policy fills the queue faster than instructions

can be issued from it. The lower right design points are the best in each of the 4 configura-

tions for memory system and issue degree.

An optimistic upper bound on the performance gained by these changes would as-

sume that compare latency is dominated by the speed of the add unit and not by the delay

Table 3.21 Average Instruction Queue Entries for Different Organizations

Single
Issue

Dual
Issue

FPU
Configuration

Interval
ofl
instr.

Interval
of 2

instr.s

Interval
of 3

instr.s

Interval
ofl
instr.

Interval
of 2

instr.s

Interval
of 3

instr.s

Interval
of 4

instr.s

Memory
System

#1 (Aurora III)
0.7 0.6 0.5 0.9 0.9 0.7 0.7 3 Cycle

Latency

#2 (Fast Transfer) 1.3 1.0 1.0 1.4 1.4 1.3 1.3

#1 (Aurora HI)
0.3 0.3 0.3 0.4 0.4 0.3 0.3 1 Cycle

Latency

#2 (Fast Transfer) 1.0 0.8 0.7 1.2 1.2 1.0 1.0

55

■ ^_—; ,
hydro2d 1 ^^^^^

mv^"" mdljdp2 1 KM"
mdljsp2 1

—-— HP1 1 1

su2cor 1 ^T

tomcatv 1

waves ■
^^^^^^^^\- —i f-,— 1 '

Base
Avg Harmonic = 1.433

Avg Arithmetic = 1.444
SPECfp92 = 303.8

3-cycle compare unit
Avg Harmonic = 1.208 Change = 15.7"!

Avg Arithmetic = 1.219 Change =15.6°
SPECtp92 = 336.7 Change = 10.8%

2-cycle compare unit
Avg Harmonic =1.169 Change = 18.4°,

Avg Arithmetic = 1.184 Change = 18.0°,
SPECfp92 = 342.8 Change = 12.8%

1.2 1.4 1.6 1.8

CPI
Figure 3.11 Upper Bound on Performance via Improved Compare Latency

involved in transferring the load data and compare instruction to the FPU. Figure 3.11

shows the results if compare latency is reduced from the 8+ cycles discussed above to either

the two or three cycles that correspond to the latency of the add unit. The faster add unit

offers only a 2% improvement in performance, a result which will be discussed further in

Section 3.8.1. Several factors end to reduce the benefits of improved compare latency:

1) Not all compare instructions are preceded by a load. These instructions may suffer

similar or worse latencies due to data dependencies. However, the data of Table 3.19

suggest that these occurrences are fairly infrequent.

2) Data cache misses will increase the latency of compare instructions beyond that

assumed for this upper bound. Most SPEC benchmarks have relatively small data

sets and experience good cache hit rates; "spice2g6" is a notable exception.

3) A compiler will not be able to schedule an arbitrary number of useful instructions

between the branch, compare, and load instructions. As discussed above, smaller

intervals between these instructions will increase branch-on-FPU stall cycles.

4) Some latency will always be associated with the compare instruction entering and

exiting the reorder buffer. Support for precise memory exceptions requires that the

compare be retired only when it reaches the head of the reorder buffer. This addi-

tional latency is on the order of 1.5 cycles.

56

Which components of compare latency are due to the inner workings of the FPU?

Table 3.18 shows that in several benchmarks the result of a compare spends time in the re-

order buffer before being committed to the status register. This is caused by other entries

that precede the compare having not yet received a results from the functional units. This

delay can add one or more cycles to the overall latency of a compare, raising the question

of whether it is necessary to wait until a compare reaches the head of the reorder buffer be-

fore the compare is retired. Consider the following sequence:

1 • c.eq <= a floating-point compare

2.1w

3. bclx <= branch on compare being true/false

4. c.eq

5. nop

The first compare (1) completes, and upon exiting the floating-point add unit, writes

the status register with a condition equal to one. The branch is then taken, followed by the

second compare which evaluates to zero. At this point, the MMU determines that the load

(2) causes a page fault. The integer reorder buffer entry corresponding to the load may have

reached the head of the integer reorder buffer, but will not be committed to the status reg-

ister due to the exception. All instructions which follow the load are squashed, the page

fault is serviced and execution resumes at the load. However, this is the second time the

branch is encountered and the condition in the floating-point status register is now zero, not

one. Consequently, the wrong path is selected for the branch. On the other hand, waiting

until the compare reaches the head of the floating-point reorder buffer will ensure that this

error doesn't occur, since there will also be an entry in this reorder buffer for the integer

load (see Section 4.5). As in the integer reorder buffer, this load entry will reach the head

of the floating-point reorder buffer and stall until the IPU sends the FPU a signal indicating

that the load cannot cause an exception. Though it is impractical to remove reorder buffer

latencies from compares, as has been shown, it is interesting to see how much effect remov-

ing this latency might have on overall performance. An estimate for the upper bound on

57

Table 3.22 Removing Reorder Buffer Latency for Compares

savings is:

Benchmark
Baseline

(CPl)
No ROB Latenc\

(CPl)

doduc 1.484 1.446

hydro2d 1.020 1.293

mdljdp2 1.420 1.356

mdljsp2 1.480 1.410

spice2g6 1.646 1.625

su2cor 1.286 1.277

tomcatv 1.281 1.273

wave5 1.589 1.538

Avg Harmonic 1.372 1.383

Avg Arithmetic 1.401 1.392

SPECfp92 303.8 308.9

% Change from
Baseline

1.7

, be Ix instructions that stall T cycles- (——■ —-—: : • Latency, .)
Number bclx instructions ro°

instructions
= CPL

On average across the benchmarks that experience branch-on-FPU stalls, the life-

time for a compare in the reorder buffer is 1.18 cycles. Table 3.22 shows that this reorder

buffer latency has a very minimal effect on overall performance.

3.7 Memory System Issues

This section focuses on improvements for the memory system to better support the

execution of floating-point code, including the bandwidth to the primary data cache, the use

of prefetching to minimize the absence of an on-chip data cache, the use of split integer and

floating-point caches, and the organization of the IPU-FPU interface.

58

3.7.1 Double-word Loads and Stores

Currently, most applications that utilize floating-point numbers use the double-pre-

TiC cision format which requires two loads or stores per operand. Since loads occur with a 25 vc

frequency and stores happen 9% of the time, a wider path to the memory system would

seem to offer significant performance gains. However, since both words of most double-

precision operands hit in the data cache, the pipelined memory system of the Aurora III ar-

chitecture means that the second reference delays issue by only one cycle (perhaps a bit

more due to bus contention). In the somewhat unlikely event that the operands are in sepa-

rate cache lines, a cache miss for the second word could impose many more than just one

additional cycle of latency. Assuming the former case, an upper bound for the performance

gained by supporting double-word references is:

- (number of single word loads) /2 + cycles,„,„■
CPI = — new instructions lotal

This relationship assumes that load latency directly equates to EPU-FPU synchroni-

zation stalls, which for an upper bound is not an unreasonable assumption since we've seen

that floating-point branches often wait for compares which are dependent on data from a

floating-point load. If the number of loads is reduced to match the number of floating-point

branches that stall while waiting for a compare, a new relationship is:

- (floating-point branches that stall) + cycles,„,„,
CPI = — new instructions total

In practice, the majority of comparisons are generated by a few sections of code.

The actual performance benefit for double-word loads may lie between these two relation-

ships. Figure 3.12 gives these bounds for all of the benchmarks. The benefit of double-word

stores will be low because they occur infrequently; it is also rare to see synchronization

stalls due to an inability to evict floating-point entries in the write cache (refer to

Table 3.15). To confirm these estimates, the benchmarks should be recompiled to take ad-

vantage of double-word loads and stores. This will require the use of a newer version of

Pixie, which is unavailable at the present time.

59

alvinn
doduc

ear
fpppp

hydro2d
mdl|dp2
mdljsp2

nasa7
ora

spice2g6
su2cor

swm256
tomcatv

wave5

Base
Avg Harmonic = 1.291
Avg Anthme6c= 1.326
SPECtp92 = 303.8

Remove 1 cycle for each FP branch
Avg Harmonic = 1.272 Change = 1.5%

Avg Arithmetic = 1.303 Change = 1.7%
SPECfp92 = 308.7 Change = 1.6%

Remove 1 cycle for half of all FP loads
Avg Harmonic =1.162 Change = 10.0%
Avg Arithmetic =1.216 Change = 8.3%
SPECfp92 = 334.2 Change = 10.0%

Figure 3.12 Performance Improvement via Double-Word Load Instructions

3.7.2 Prefetching of Data

Prefetching floating-point data serves to offset not having a large on-chip primary

data cache and can result in a significant increase in performance. The overall improvement

in CPI is 14.4% and some applications see a gain of as much as 60%. These results are

based on a scheme that prefetches only with a unity stride, and examines only the top entry

of the prefetch buffer; both of these constraints might warrant reexamination. Much work

has been done elsewhere concerning hardware and software prefetching and can be refer-

enced for these issues [Chen94], [Fu92], [Klaiber91], [Jouppi90].

3.73 Improving Cache Performance for Floating-
Point Code

Since floating-point data access frequency can be 20-30% of total accesses, float-

ing-point memory references can contaminate integer data in the data cache. Integer and

floating-point data may be located in the same cache line, and a floating-point miss may

flush needed integer data. The use of a split data cache would avoid this problem, but would

require much additional overhead circuitry. The FPU would need logic to generate address-

es and implement a cache coherency policy. An internal report from Princeton [Wolfe92]

explores this idea in a study based on a modified version of Mike Johnson's Match simu-

60

lator. The integer processor contained parallel execution units for loads, stores, branches.

and ALU operations. The FPU contained units for loads, stores, adds, conversions, multi-

plies, and divides. Reservation stations of 4 entries were used on all units except for divi-

sion, which had 2 entries. The I-cache was 16k, 4 words/line, direct-mapped, with a 12-

cycle miss penalty. The base system had a unified data cache of 64K, having 8-way asso-

ciativity, 8 words/line, and a 16-cycle miss penalty. The split approach used a 16K integer

data cache and a 64K floating-point data cache. A snoopy coherence policy was used for

main memory; tags for both data caches were compared simultaneously in order to resolve

store hits. The instruction fetch width, and corresponding number of decode units, was

found to be four (the peak parallelism for instruction issue was five). Eight of the ten

SPEC89 benchmarks were used (espresso and gcc were not used, due to disk constraints)

and no more than 8 million instructions (without sampling) were run for any one program

(possibly limiting the accuracy of the results). Floating-point performance in this simulator

was almost identical performance for the split cache and the 64K unified cache. Integer per-

formance dropped by 25-30% because of the reduced size of the integer data cache. In ad-

dition, the amount of invalidation between the two caches (a measure of how physical

locality of integer and floating-point data) was only a few percent. Even if these invalidates

were totally eliminated, the overall gain would be minimal. Similar performance could be

obtained by simply increasing the size of the unified cache, without the extra hardware ex-

pense involved with splitting the caches.

A second idea for reducing cache contention between floating-point and integer

data is not caching selected floating-point references. Floating-point intensive programs of-

ten stream through matrix/vector data; if the lifetime of this data is short, caching it may

not make sense. Dynamic stride-detection and data prefetching could be used to recognize

these cases and reduce their latency. This approach is more practical for a technology like

GaAs which cannot support large on-chip caches because it reduces the occurrence of data

being purged from the first-level cache. However, the Princeton split-cache study suggests

that contention between integer and floating-point data may actually occur infrequently.

This is another case where good compiler support could improve performance by organiz-

61

ing matrix data to increase its lifetime. 'c

3.7.4 Interface between IPU and FPU

As mentioned before, the existing external IPU busses could be used in several

different ways to handle the transfer of floating-point instructions and data. The simplest,

and the one implemented for the FPU, uses only the two data cache busses, dein and

dcOut (refer to Figure 3.1). The dein bus is used by the load-store unit to send data to the

primary data cache and the dcOut bus is used to receive data from the data cache. From the

perspective of the IPU, these busses are unidirectional. However, from the FPU

perspective, both are bidirectional: instructions and data can be sent to the FPU via dein,

and the FPU can send data to the data cache via dein; the FPU can receive data from the

data cache via dcOut, and the FPU can send data to the IPU also via dcOut. Recall that

there are 3 types of floating-point queues: instruction, load data, and store data. For a load

instruction to be transferred, there must be a free entry in both the instruction and load

queues. Each entry in the load queue has a valid bit, which indicates whether the data in

the entry is ready to be used; the data comes from a valid write cache or data cache hit, or

has been returned from the secondary memory system via the MMU and BIU. Instructions

that transfer data from the IPU register file to the FPU register file will set this valid bit

during the same cycle that the instruction and data are transferred. On the other hand, load

data will be transferred after the load instruction, and then in a later cycle, when the status

of the memory reference is known the valid bit will be set. Issue of a floating-point load

which reaches the head of the instruction queue will be stalled until the valid bit for the

head entry of the load queue is set. This approach might be modified to issue the

instruction prior to knowing whether the data is valid, but the complexity in doing so is

significant and simulations suggest the performance benefit is small. Since the data cache

busses have multiple uses, a priority policy for each bus needs to be defined. The

following summarizes the types of transfers that can appear on each bus.

62

dein

1) 2 floating-point instructions (64b total)

2) 1 double word store data operand (64b). For simplicity, single word loads/

stores will also be sent as 64 bits, with the upper half padded with zeroes. A

pin on the FPU will indicate whether at least one store queue entry has valid

data. Store data must be sent simultaneously to the IPU (in order to write the

proper write-cache entry) and to the data cache. In other words, for a store

transfer to occur, both dein and dcOut must be available. Decoupling this into

2 transfers would add complexity, which is probably not warranted, since

stores infrequently (9% on average).

3) 1 move-to-FPU instruction (32b) and 1 operand (32b) from the integer regis-

ter file. As mentioned above, the valid bit for the corresponding load queue

entry will be set immediately upon transfer of the instruction and data.

4) 1 single/double word load data operand (64b). The majority of loads (80 to

95%) hit in the data cache, and therefore will be sent to the FPU via dcOut.

However, some loads hit in the write cache or prefetch buffer, or need to

come from the secondary memory system. In these cases, the data are trans-

ferred over the dein bus. The frequency of these types of transfers is quite

low, on the order of a few percent of all cycles.

dcOut

1)1 single/double word load operand (64b) on a data cache hit.

2) 1 move-from-FPU operand (32b) taken from the floating-point register file.

As with a store, this transfer occurs via the store queue.

3) 1 single/double word store operand (64b).

Among these bus events, the transfer of load data is given the highest priority, since

an unresolved load in the queue will block other instructions from issuing and can eventu-

ally stall instruction transfer if the queue becomes full. A deadlock situation might result if

63

instructions were given a higher priority than load data transfers. The only uses for the

dcOut bus are for load data (integer and floating-point) and for store data (floating-point).

As mentioned, stores are infrequent but loads are common. Loads via dein occur infre-

quently, but when they do occur, there is a good chance that the instruction queue has be-

come full and has stalled the IPU. Therefore, the following priority policy was defined:

dein dcOut

1. 1 single/double word load operand 1. 1 single/double word load

operand

2. 1 or 2 floating-point instructions, or 2.1 move-from-FPU operand,

1 move-to-FPU instruction with data or 1 single/double word

store operand

3. 1 single/double word store operand 3. no transfer

4. no transfer

The architectural simulator reports a number of interesting statistics about the utili-

zation of these busses. As summarized in Table 3.23 and Table 3.24, bus activity varies

greatly between the benchmarks; the busses are idle for some programs ("alvinn" and

"spice2g6") whereas they are continuously busy for other benchmarks ("fpppp" and

"nasa7"). Floating-point instructions comprise the great majority of transfers over the dein

bus; they rarely stall due to a load-data transfer. This is to be expected, since load data is

transferred via dein only on write-cache hits and data cache misses, both of which occur

infrequently. Conversely, load-data transfers associated with data cache hits dominate the

activity on the dcOut bus. For many benchmarks, store data transfers occur infrequently

enough that they seldom contend for the use of either bus. An 8-entry write cache was used

in these simulations and even those programs with a large number of store stalls due to bus

conflicts experience very few IPU stalls. A more realistic 4-entry write cache still has few

IPU stalls. Store stalls that result from bus contention impact performance only when the

store queue is not large enough to accommodate store data while it waits for access to the

64

Table 3.23 Utilization of dein Bus

Benchmark
9c Idle

(of total cycles)

9c FP lnstr.s
(of total

transfers)

9c Loads
(of total

transfers)

9c Stores
(of total

transfers)

9 FP lnstr
Stalls

(of total
cycles)

9 FP Store
Stalls

lot total
cycles)

alvinn 99.2 77.6 0 22.4 0.000 0.000

doduc 54.2 76.6 0.2 23.2 0.013 8.834

ear 48.3 84.7 0 15.3 0.002 35.535

fpppp 9.7 72.7 0.1 27.2 0.008 45.802

hydro2d 50.3 76.7 3 20.3 0.282 16.678

mdljdp2 50 74.7 0.2 25.1 0.022 6.086

mdljsp2 62.5 80.2 0.1 19.7 0.010 3.430

nasa7 10.4 77.9 2.1 20 0.669 26.865

ora 47.9 64.3 0 35.7 0.000 18.056

spice2g6 92.1 88.8 8 3.2 0.002 0.142

su2cor 37.1 67.7 2.6 29.7 0.861 25.869

swm256 17.9 78.4 1.8 19.8 0.517 39.727

tomcatv 12.8 69.8 4.7 25.5 1.272 44.474

wave5 65.8 81.9 0.1 18 0.000 2.285

cache busses.

The Aurora HI FPU was designed to use the existing data cache busses to support

the transfer of floating-point instructions and data in order to minimize the number of pins

on the IPU. This approach need not create a performance bottleneck, although it does com-

plicate the design by requiring the prioritization of bus activity to be merged into existing

load-store unit control logic. This decision requires the interface logic in the FPU to con-

sider the various uses of the two cache busses and to ensure that instructions and data are

sent to the appropriate registers. An alternative discussed earlier involves the use of dedi-

cated busses between the IPU and FPU for transferring instructions and data. This would

allow the transfer point for floating-point instructions to be moved ahead by several pipe

stages, but would require adding approximately 192 pins to the IPU. The benefits of dedi-

cated busses depend on each application and on the degree of synchronization between the

65

Table 3.24 Utilization of dcOut Bus

Benchmark
9r Idle

(of total cycles)

5c Loads
(of total

transfers;

9c Stores
(of total

transfers)

9f FP Store
Stalls

(of total
cycles)

Wnte
Cache

Eviction
Stalls

(4-entrv)

V.nte
Cache

Eviction
Stalls

(8-entry)

alvinn 88.2 99.3 0.7 0.000 0.00 0.00

doduc 77.1 81.6 18.4 4.044 2.10 0.00

ear 83.8 93.5 6.5 8.829 0.10 0.00

fpppp 50.8 82.8 17.2 26.785 10.90 0.91

hydro2d 78.2 84.6 15.4 8.361 1.20 0.03

mdljdp2 81 74.4 25.6 2.097 6.40 1.15

mdljsp2 86.6 73.7 26.3 1.196 3.90 0.08

nasa7 47.7 84.2 15.8 17.426 0.00 0.00

ora 80.7 60.4 39.6 7.247 1.80 0.00

spice2g6 87.4 99.5 0.5 0.016 0.00 0.00

su2cor 75.3 69.8 30.2 9.403 12.0 0.91

swm256 67.9 80.4 19.6 14.513 19.60 0.58

tomcatv 53.6 78 22 26.230 7.00 0.00

wave5 86.2 80 20 0.644 0.00 0.00

IPU and FPU. Instruction sequences involving floating-point comparison and branch in-

structions have been found to have the greatest impact on performance. In order to benefit

from transferring floating-point instructions earlier, both operands must be ready when the

compare instruction reaches the issue point. The 3-cycle latency for a data cache hit in the

Aurora HI architecture would require more than 3 instructions to fall between load and

compare instructions in order to take advantage of an early transfer; a shorter cache latency

would favor an earlier transfer point, while dual issue reduces the number of cycles for in-

tervening instructions, decreasing the impact of early floating-point instruction transfer.

3.8 Resource Allocation Issues

There are a number of issues that have an impact on the cost of allocating on-chip

66

resources, including the complexity of algorithms used for the various functional units, the

use of pipelining to support higher clock frequencies while maintaining throughput, and the

selection of a reasonable number of entries for the reorder buffer and queues in the FPU.

RBE's are used to contrast the performance benefit with the cost of these resource alterna-

tives.

3.8.1 Sensitivity to Functional Unit Latencies and
Pipelining

In this section, the area and complexity costs of reducing latencies will be discussed

for each of the functional units, and then the effect on overall performance of this reduced

latency will be evaluated.

Numerous floating-point addition optimizations can be used to reduce latency, all

at the expense of transistor count and implementation complexity. These include parallel

paths for alignment and normalization, fast generation of the sticky bit, and leading one pre-

diction for normalization. To evaluate the cost/performance ratio for these features, several

adders were investigated. A two-cycle add unit incorporating these approaches occupied

the most area, due primarily to its use of two 53-bit mantissa adders. A three cycle add unit

resulted in an area reduction of 20%. Further reduction of resources of adder resources re-

sulted in four- to five-cycle latencies.

Conventional approaches to multiplication involve a partial product array (3-2 or 4-

2 carry-save adders) followed by a carry-propagate mantissa adder. Booth recoding of the

input operands can be used to reduce the number of levels in the array by one, at the expense

of adding recoding multiplexors. Analysis of these two approaches for GaAs DCFL

showed that the area savings of Booth-recoding are small when compared to the increase

in complexity of the design. Increases in capacitance along critical paths of a Booth recoded

multiplier tend to offset the reduction in logic depth. Another alternative involves the iter-

ative use of a smaller array. This approach reduces the size of the multiplier considerably,

however five cycles are needed to produce a result. Furthermore, the multiplier is not pipe-

lined, forcing subsequent multiply instructions to wait for the current instruction to com-

67

plete.

Non-restoring division algorithms can be enhanced by representing intermediate re-

sults in a higher radix redundant form. SRT-2, SRT-4, and SRT-8 approaches return one,

two, and three bits per cycle, respectively. Latencies for these divide units vary from 20 to

more than 50 cycles. Techniques can be employed for performing both on-the-fly conver-

sion from redundant to sign-magnitude form and on-the-fly rounding of the result.

The IEEE floating-point standard specifies that conversion to and from all formats

should be possible. For single, double, and integer formats, this results in six different types

of conversion. While conversions could also be performed in the add unit, doing so would

impact critical paths since the additional muxes and control required would result in an in-

crease in logic depth. A separate conversion unit can be designed with a modest amount of

hardware (30K transistors), having latencies of 2 to 4 cycles.

Figure 3.13 shows CPI performance for various latencies of the four execution

units. Addition and multiplication both show a 17% change in CPI for latencies ranging

from one to five cycles. For addition, latencies of two, three, and four correspond to inter-

esting realistic designs. An add unit with a latency of two results in only a 2% improvement

in performance over one taking three cycles, while a latency of 4 is 5% worse than a latency

of 3. Similarly, each additional cycle of latency in the multiplier reduces performance (as

measured by CPI) by 4%. In the division unit, over a latency range of 10 to 30 cycles, per-

formance changes by 8%. Conversion instructions occur very infrequently and have little

impact on overall performance. The same simulations were repeated for non-pipelined ad-

dition and multiplication units. Interestingly, the degradation in performance is less than

5%. The latches used for pipelining these two units account for approximately 25% of the

area for each unit. Not pipelining these units would result in significant savings in area and

power dissipation

3.8.2 Reorder Buffer

A reorder buffer provides many benefits. First, if an out-of-order completion policy

68

Q.

2.2-

2-

1.8

1.6

1.4-

1.2-

~l 1 1 1 1
15000 15800 16600 1740018200 19000 19800

RBE

0.8

Multiply Latencies

—i 1 1 1 1 1

13000 1400015000 16000 17000 18000 19000
RBE

2.2-1

2-

1.8

1.6-

1.4

1.2-

1-

30 25 20 15 10

0.8-
16000

B » 8

B B

Divide Latencies

2.2-1

2-

1.8

1.6

1.4-1

1.2

1-

0.8-

2

9

1

Conversion Latencies

17000 18000
RBE

19000
j.o-l -l 1

16000 16500 17000
RBE

17500

Figure 3.13 Performance vs. Resource Cost for Floating-Point Functional

is used, the reorder buffer ensures that results are written back to the register file in the cor-

rect order. Upon issue, an instruction reserves the next available location in the reorder

buffer by writing the result register to the entry and by adding the reorder buffer tag to the

correct result-bus shift register entry. When an instruction in an execution unit has finished,

this tag is used to guide the result into the correct reorder buffer entry and the valid bit for

the entry is set. On every clock cycle, if valid data is at the head of the reorder buffer, it is

written back to the register file. In this way, the reorder buffer serves to prevent output de-

pendencies, since results are written back in the order of the original instruction stream.

Both output and anti-dependencies result from aggressive compiler scheduling of a limited

number of registers (hardware parallelism is limiting available instruction parallelism),

69

rather than from true dependencies. Register renaming can be used to reduce their impact.

This can be done in the reorder buffer by identifying a result entry with the specific result

register. When a source operand is needed, the reorder buffer and the register file are ac-

cessed in parallel, the former being addressed using the register name. If the result is found

in the reorder buffer, it is forwarded as the correct operand. Multiple result references to the

same register can be active at one time within the reorder buffer; hence it is necessary that

the most one be returned. As an alternative to an associative reorder buffer, which is diffi-

cult to implement in GaAs, a small tag lookup table is used to find the most recent reorder

buffer tag for a source register. The valid bit in the entry determines whether the corre-

sponding data in the reorder buffer is available. Finally, the reorder buffer can be used to

ensure that exception handling is precise. If an exception occurs during the execution of an

instruction, an exception field in the reorder buffer entry will be written at the same time as

the exceptional result. When this entry reaches the head of the reorder buffer, an exception

is signalled and all remaining entries are marked as invalid. Consequently, no subsequent

instructions have written the register file, and after handling the exception, the FPU can be

restarted at the instruction which follows the exceptional one.

The average number of entries needed in the reorder buffer, as found through sim-

ulation, reflects the number of simultaneous floating-point instructions in execution on av-

erage. Another way to view the size of the reorder buffer needed is by comparing how the

average number of entries relates to the average number of floating-point instructions per

basic block, as shown in Table 3.25. Several observations can be made from this table.

First, the average size of a basic block tends to be much larger for floating-point intensive

applications than for integer ones; much more work is being done between branches for

floating-point code. Second, Table 3.25 suggests some correlation between the number of

floating-point instructions per basic block and the optimal size for the floating-point reor-

der buffer. This reflects the effect of cache misses, which tends to reduce the number of out-

standing floating-point instructions. As discussed above, the type of issue policy can affect

how many instructions are active at a time and how many reorder buffer entries are needed;

an OOOO policy requires more entries than an 1000 policy (an IOIO policy does not use

70

Table 3.25 Basic Block Sizes for SPECfp92

Benchmarks
(Complete Run)

Instructions per
Basic Block

Floating-Point
Instructions per

Basic Block

Reorder Butler
Entries

(IOOO Policy)

Reorder Buffer
Entries

(OOOO Policy)

alvinn 13.97 9.96 1.17 1.17

doduc 11.33 6.86 6.29 8.75

ear 9.48 6.00 1.95 14.35

fpppp 27.92 21.72 8.50 10.22

hydro2d 8.65 4.89 3.78 7.39

mdljdp2 11.19 6.71 6.60 11.24

mdljsp2 9.60 4.97 3.59 9.45

nasa7 28.35 21.74 17.45 17.97

ora 8.80 5.216 7.03 8.14

spice2g6 10.77 1.543 1.12 2.36

su2cor 17.97 12.73 8.27 11.46

swm256 38.97 31.53 7.87 16.17

tomcatv 27.22 24.08 9.20 14.41

wave5 15.64 9.97 2.69 5.38

Avg Harmonic 13.54 6.51 3.4 5.7

Avg Arithmetic 17.13 11.99 6.1 9.9

a reorder buffer at all). Consequently, an OOOO policy requires roughly the same number

of entries as there are floating-point instructions per basic block. Figure 3.14 compares per-

formance to resource cost.

3.8.3 Instruction Queue

Queues have been a component of numerous past designs. For instance, in a DAE

machine the instruction stream is split into separate decoupled memory and execute

streams that communicate via queues [Smith86, Smith87]. This approach offers several ad-

vantages, including an opportunity to issue more than one instruction per cycle and less

sensitivity to memory access delays, since the instruction fetch stream is allowed to run

71

22-

2-

1.8- ;
1.6

1.4

1.2-

» i n .

16-
ä
u

1 4-

j ;
I

1-2-

1-

i]
0.8-

i e-

1 6-

1 4-

16400166001680017000172001740017600 1620°
RBE

Reorder Buffer Size

16300 16400
RBE

16500 16200 16300 16400 16500 16600 16700
RBE

Instruction Queue Size Load Queue Size

Figure 3.14 Queue and Reorder Buffer Resource Allocation

ahead of the execution stream. Thus, memory accesses can be dispatched further in advance

of when they are actually used. For other designs, an I/O buffer has been a characteristic of

at least one previous FPU [Takeda85], and instruction queues have appeared in several oth-

er machines [Molnar89], [Steiss91], [Darley90].

The use of an instruction queue instead of a single entry instruction buffer allows

substantially more slip by the IPU. Instead of stalling due to FPU data dependencies or re-

source conflicts, the IPU is able to transfer a floating-point instruction and continue execu-

tion. The IPU will stall due to the FPU only when of the queue becomes full or when it has

to wait for FPU results. Decoupling queues also serve to hide extra latency caused by chip-

crossings, and can lessen the impact of having different clock frequencies for the IPU and

FPU, a situation that can result from there being a difference between the bit-widths of data-

paths for these two chips. This point is made in Table 3.26, that as the clock frequency of

an IPU chip (paired with a 250MHz FPU) is increased, the CPI does not degrade as fast as

the IPU frequency increases.

Figure 3.14 shows how performance varies for different queue sizes. For a dual is-

sue policy, a queue of depth 5 achieves nearly the same performance across all benchmarks

as a queue with an unlimited number of entries. The same experiment was performed for a

single transfer, single issue processor; the results (not shown) indicate an optimal queue

size of 3 entries. Considering that only one instruction can be transferred from the IPU to

the FPU per cycle in such a system, and that there are fewer floating-point instructions ac-

72

Table 3.26 CPI for Queues and Different IPL7FPU Clock Frequencies

Benchmark
(50M Instructions)

250MHz
(IPU = FPU)

300MHz
(IPU = 1.2 FPU)

350MHz
(1PU= 1.4 FPU)

400MHz
lIPU= 1.6 FPU)

ear 1.0049 1.1603 1.3170 1.4941

fpppp 1.0236 1.1172 1.2678 1.4257

hydro2d 1.2866 1.4364 1.5634 1.7056

spice2g6 1.6238 1.6740 1.7001 1.7318

Avg Harmonic 1.189 1.311 (10.3%) 1.441 (21.2%) 1.578(32.7%)

Avg Arithmetic 1.235 1.347(9.1%) 1.462(18.4%) 1.589(28.7%)

tive at a time in such a machine, the smaller optimal queue size is to be expected. Figure

3.15 shows how the recommended size of the instruction queue varies with issue policy.

The smaller number of entries needed in the instruction queue for an OOOO policy can be

explained by the fact that dispatch constraints are less restrictive; as a result, instructions

spend less time on average in the queue before reaching a reservation station. In effect,

look-ahead is being expanded with the larger instruction window. This decrease in queue

entries is more than compensated for by a need to have more reorder buffer entries, which

are more expensive. An upper limit for the number of entries in the instruction queue would

be the number of entries in the integer reorder buffer, since there cannot be more than that

number of active floating-point instructions. The use of an instruction queue does make

IOOO Policy
Avg Harmonic = 4.1
Avg Arithmetic = 7.0

alvinn f | |
doduc 1

ear ■ BP
fpppp | ^^L

hydro2d ■
mdljdp2 I
mdljsp2 B

nasa7 | ^^

ora ■ ■"
spice2g6 | ^r™

su2cor I
e«/mO«;R 1 ^^H^^H HUH MHiM

tomcatv I
wflvpK HMP"^^^^™

-r-P-,

OOOO Policy
Avg Harmonic = 2.4
Avg Arithmetic = 5.1

4 6 8 10 12 14 16
Number of Entries
Figure 3.15 Instruction Queue Size

73

precise handling of exceptions more cosüy in terms of hardware, since the IPL" may be

many instructions past an exceptional instruction when the exception is signalled. Howev-

er, as will be discussed later, there are several ways to address imprecise floating-point ex-

ceptions.

3.8.4 Load Queue

Use of an instruction queue necessitates a corresponding load queue in which to

store data prior to its being written into the floating-point register file. However, the depth

of this queue does not need to be as great as that of the instruction queue. As shown in

Table 3.27, for an IOOO policy, a 3 or 4 entry load queue functions well, while an 0000

policy needs one fewer entry. As in the instruction queue, out-of-order issue moves more

instructions past the queues and into reservation stations, which also explains the need for

fewer entries in the load queue. The recommended size of the load queue correlates well

with the fact that most floating-point operations use double precision operands, each of

which requires 2 single-word load instructions. The need for an additional entry can be ac-

counted for by memory system latency. Even on a cache hit, there is one cycle delay be-

tween arrival of the load instruction at the queue and validation of the data. Of course,

additional delay is incurred on a cache miss; the average number of load queue entries in

the table accounts for cache miss latencies, too.

3.9 Miscellaneous Issues

This section will address a number of unrelated issues, including hardware support

for square root, several alternatives for implementing floating-point store instructions, the

use of additional result busses to support an increase in parallelism for dual issue of float-

ing-point instructions, the use of the multiply unit to perform division, and the trade-offs in

implementing different floating-point operand widths.

74

3.9.1 Hardware Square Root

Since transcendental functions occur infrequently in the SPECfp92 benchmarks.

they are not worth implementing in hardware. The Aurora III FPU omits these operations,

depending instead on the compiler to link in software library routines to perform these cal-

culations. However, the question of whether to support square root in hardware is not as

clear; Figure 3.16 suggests that some programs would benefit from doing so. Square root

capability with a latency of approximately 21 cycles can be built onto a divide unit; this re-

quires the addition of both a lookup table ROM for deriving an initial estimate and some

extra datapath logic. The impact on area is small; the impact on critical paths may be slight-

ly greater. The performance of such square root hardware can be compared to the MIPS li-

Table3.27 Load Queue Size

Benchmarks
(50M Instructions)

Average Load
Queue Entries
(IOOO Policy)

Average Load
Queue Entries

(OOOO Policy)

alvinn 1.00 1.00

doduc 3.07 2.51

ear 3.60 3.59

fpppp 3.54 4.02

hydro2d 3.26 1.78

mdljdp2 3.17 1.68

mdljsp2 2.02 1.28

nasa7 8.07 8.38

ora 1.24 1.01

spice2g6 1.71 1.00

su2cor 3.09 2.14

swm256 4.80 4.31

tomcatv 4.36 1.79

wave5 1.88 1.03

Avg Harmonic 2.4 1.7

Avg Arithmetic 3.2 2.5

75

bran- function for square root, which executes 62 instructions, with a CPI for the routine of

2.09, meaning that 124 cycles are needed for each square root reference. A bound on CPI

that is possible for a hardware square root instruction is described by the following:

CPI
Cyclesold+ (Number sqn references Latency) - (Number sqrt instructions per reference CPI qrt>

instructions

Latency is the number of cycles added by a square root instruction to the total

runtime. In the worst-case, the FPU will stall as soon as the square root instruction is issued,

and the entire latency of the operation will be added to the total cycle count. Intermediate

points in the design space might assume that useful integer work is overlapped with the

square root operation and that the effective latency is either 0 or 10 cycles. Figure 3.17 sum-

marizes the impact of square root for the 8 benchmarks which use this function. While the

improvement for one application, "ora", is quite large, the average improvement is a more

modest 7% to 9%. The "ora" benchmark represents a class of programs which perform

graphics transformations and for which square root is used frequently. Since multi-media

applications are increasing, other programs of this type should be examined in order to fur-

ther illuminate the cost/benefit of including a hardware square root instruction. The rate of

performance growth for processors suggests that any feature which adds only 5% to overall

performance should require no more than a month for design and verification.

alvinn
doduc !■

ear
fpppp i

hydro2d ^m
mdljdp2
mdljsp2

nasa7 to

spice2g6 1
su2cor pHi

swm256
tomcatv

wave5 ■■■■■

0 5 10 15 20 25 30 35 40 45

Percentage
Figure 3.16 Percentage of Instructions Due to Square Root

76

doouc 1 v^BHB^

fpppp I ■

hydro2d M WWlPiu—M^

nasa7 ■ Wf

ora ■ HPP

spice2g6 j| Hi BJm IB—11

su2cor jj BHSMIMPM WJP"Pm '

waves | MMMMMIMMMnMBr'"**1

1 ! i I 1 1

D Base
SPECtp92 = 303.8

21 cycle hardware sqrt
SPECfp92 = 324.4 Change = 6.8%

10-cycle hardware sqrt
SPECtp92 = 327.5 Change = 7.8%

0-cycle hardware sqrt
SPECfp92 = 330.5 Change = 8.8%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 3.17 Performance Benefit via Hardware Support for Square Root

3.9.2 Store Policies

Data transfers from the FPU to the IPU can be handled in several ways. As with oth-

er floating-point instructions, store and move-from-FPU instructions (both will be referred

to as store instructions) must return results in the correct order. One simple approach would

be to stall the FPU when a store instruction reaches the head of the instruction queue if the

corresponding source register has a write-back pending. However, this scheme would also

stall instructions following the store instruction which would otherwise be able to issue. In

this case, two kinds of out-of-order issue might make sense. The store instruction might be

issued to the reorder buffer, where it would await completion of the instruction producing

the data to be stored. In-order completion would be ensured by the reorder buffer; when the

store entry reached the head of the reorder buffer and contained valid data, it would be sent

to the IPU via a store queue. This manner of issuing store instructions requires one addi-

tional write port in the reorder buffer for each result bus, since a result might need to be

written to both its own entry and to a store entry. More importantly, the store transfer would

not take place until all entries ahead of it in the reorder buffer had been written back to the

register file.

Another approach would involve the use of a separate store reorder buffer. A tag

would be written to the store reorder buffer at issue and when the pertinent data was avail-

able, it would be written to both reorder buffers. An additional result shift register (de-

77

Table 3.28 Store Policies

Benchmarks
(65M Instructions i

CPl
Stall on
Issue

CPl
Issue

to ROB

CPl
Issue to

Store ROB

alvinn 2.111 2.110 2.110

doduc 1.768 1.770 1.754

ear 1.136 1.091 1.091

hydro2d 1.099 1.093 1.081

mdljdp2 1.079 1.072 1.072

nasa7 1.065 1.034 1.032

ora 1.768 2.002 1.770

spice2g6 1.194 1.204 1.204

su2cor 1.683 1.712 1.656

Average 1.345 1.347 1.326

% Change 0.2 1.4

scribed under Section 3.9.3) would be needed, but a register lookup table would not be

needed, since the result would be accessed for on-chip use only through the regular reorder

buffer. The most important characteristic of the two-reorder buffer approach is that stores

could be completed ahead of previous non-store entries that have not yet completed. The

peak number of entries needed in such a store reorder buffer would relate to the largest pos-

sible number of active instructions, although the average number of entries would be much

lower. As indicated in Table 3.28, stall-on-issue and issue-to-ROB policies would achieve

similar performance; an issue-to-store ROB architecture would achieve only a 1.4% im-

provement in overall CPl compared to a stall-on-issue design (individual applications saw

as much as a 4% improvement in CPl). The small performance gain for a store reorder buff-

er does not justify its use. Store instructions are used fairly infrequently and when they are

encountered there is a high probability that the necessary operand has already been, or will

soon be, computed, since the most commonly used floating-point instructions have fairly

short latencies. Table 3.29 shows that little time expires between a floating-point store

reaching the issue point and data being ready. Support for an appropriate number of write

78

Table 3.29 Average Delay Between Issue of a Store Issues and Data Availability

Benchmark
(65M Instructions)

Average Store Reorder
Buffer Watt for Data

doduc 1.621

ear 1.036

fpppp 1.357

hydro2d 1.483

nasa7 1.378

spice2g6 1.079

su2cor 1.468

swm256 1.443

tomcatv 1.492

Avg Harmonic 1.345

Avg Arithmetic 1.373

cache entries would further decouple the execution of floating-point stores. The store reor-

der buffer would also face problems handling memory exceptions and preserving a precise

execution model.

As a result, the Aurora HI FPU was implemented with a stall-on-issue policy for

stores in conjunction with a simple store queue. To ensure precise memory exceptions, this

queue is written with data that has passed through the reorder buffer. The store data origi-

nates from the floating-point register file, reorder buffer, status register, or HI/LO registers

(used for integer multiplication). Each store queue entry contains: 1) the data operand,

aligned to the high or low word, depending on the address of the store, or aligned to the low

word for move-from-FPU instructions, 2) a 2-bit tag which identifies the type of store

(move-from-FPU or store single/double), and 3) the integer reorder buffer tag for the store

instruction, which is used to guide the data to the correct write-cache or integer reorder

buffer entry. A single FPU pin is used to indicate that floating-point store data is available

and ready to be transferred to the IPU. Table 3.30 summarizes the average number of store

queue entries needed by each benchmark; a size of 2 or 3 entries is consistent with the ob-

79

Table 3.30 Average Number of Store Queue Entries

Benchmarks
(50M Instructions)

Avg Store
Queue Entnes
(lOOO Policy)

alvinn 1.000

doduc 3.442

ear 1.108

fpppp 5.951

hydro2d 3.001

mdljdp2 3.176

mdljsp2 1.873

nasa7 3.000

ora 1.933

spice2g6 1.433

su2cor 5.859

swm256 2.950

tomcatv 5.311

wave5 1.303

Avg Harmonic 2.135

Avg Arithmetic 2.953

servation that most floating-point stores are used with double-precision operands.

3.9.3 Result Busses

As execution of instructions increases within the FPU, more demand is placed on

the bus used to write results from an execution unit to the reorder buffer. Consequently,

having additional result busses is beneficial, especially in supporting dual issue of floating-

point instructions. From Table 3.31, we can conclude that no more than two result busses

are needed, which is consistent with results presented elsewhere for designs which issue on

average between one and two instructions per cycle [Johnson91]. Each result bus has a cor-

responding result shift register (RSR), each entry of which contains a reorder buffer tag and

a functional unit designator. The output of the functional unit indicated by the designator is

80

Table 3.31 CPI Performance for Different Numbers of Result Busses

Benchmark
(65M Instructions)

One
Bus

(CPI)

Tuo
Busses
(CPI)

Three
Busses
(CPI)

Four
Busses
(CPI)

alvinn 2.111 2.111 2.111 2.111

doduc 1.704 1.688 1.696 1.696

ear 1.146 1.127 1.127 1.127

hydro2d 1.052 1.035 1.035 1.035

mdljdp2 1.086 1.019 1.019 1.019

nasa7 1.279 1.057 1.057 1.057

ora 1.775 1.764 1.764 1.764

spice2g6 1.204 1.204 1.204 1.204

su2cor 1.654 1.627 1.627 1.627

Average 1.367 1.312 1.312 1.312

% Change 4.0 4.0 4.0

written to the appropriate reorder buffer entry, through the use of the tag. The RSR needs

to have one stage of depth for each cycle of delay in the functional unit with the longest

latency. By constraining divides to use only one of the result busses, one can reduce the

number of entries in the RSR for the other result bus. Alternatively, the Aurora m FPU al-

lows divide instructions to poll the result busses upon completion of a divide operation; this

means that writeback of the reorder buffer is delayed until a free bus can be acquired. This

approach saves stages for the result bus shift registers, at a slight cost in divide latency.

3.9.4 Divide Performed in Multiply Unit

There are numerous hardware algorithms for performing division, including restor-

ing, non-restoring (SRT, Sweeney-Robertson-Tocher), and successive approximation (i.e.,

Newton-Raphson). The Newton-Raphson method, which involves multiplication by a re-

ciprocal, could be done within the multiply unit, saving the area of a dedicated divide unit.

The effects of doing so were simulated under the following assumptions:

1. a divide can be issued even if multiplies are currently being executed in the multiply

81

Table 3.32 Divide Performed in Multiply Unit

Benchmark
(65M Instructions)

CP1

alvinn 2.127

doduc 2.038

ear 1.623

hydro2d 1.115

mdljdp2 1.800

nasa7 1.294

ora 1.921

spice2g6 1.204

su2cor 1.929

Avg Harmonic 1.587

Avg Arithmetic 1.672

% Change from IOOO baseline -20.7

unit, since each will be using different stages of the multiply pipeline.

2. a divide or multiply cannot be issued to the multiply unit if a divide is currently being

executed.

The results of this experiment, which uses an IOOO policy and a 3-entry instruction

queue, are shown in Table 3.32; the use of a pipelined multiply unit to perform divides has

a significantly negative impact on overall performance. In fact, the gains derived from us-

ing an IOOO policy and an instruction queue have been lost. As a result, a separate divide

unit has been implemented; this unit has been omitted from the current FPU design due to

space limitations. It would be interesting to determine the effect of not doing division in

hardware at all, but instead in software. While most applications avoid division (less than

1% of all SPECfp92 instructions are floating-point divides), certain programs, such as

graphics applications, would suffer a significant performance loss without a hardware di-

vision instruction.

82

3.9.5 Operand Formats

To minimize design time of the FPU, single precision calculations were not includ-

ed in the add, multiply, or divide units; conversions among all data formats are supported

by the conversion unit. The effect of this decision on overall performance is minimized by

the fact that the ANSI standard for C requires all floating-point calculations to be performed

using the double precision format. Consequently, for the two single-precision SPECfp92

benchmarks that are compiled in C, the compiler converts all single precision operands into

the double precision format prior to performing a floating-point arithmetic operation. Be-

fore a result is stored to memory, it is converted back to the single precision format. All of

these conversions add overhead to the execution of the program. In "alvinn", conversion

instructions account for 1.0% of all instructions and for "ear", conversions comprise 16.9%

of all floating-point instructions. There are several options for managing this problem: 1)

change all program variables to the double precision format, and 2) support single precision

operands in hardware. In either case, an upper bound on performance improvement can be

derived from the following relationship:

Cyclesnew = Cyclesold- (Number conversion instructions CPlConvert)

This expression assumes that the majority of conversion instructions are used to

convert between the single and double formats, and not between the word format; this as-

sumption is valid for the "alvinn" and "ear" benchmarks. The CPiconverl variable represents

the average number of cycles needed to execute a conversion instruction; several realistic

values are used in Table 3.33. The total cycles for the "alvinn" benchmark is not affected

since conversions comprise such a small percentage of the total instructions that are exe-

cuted. On the other hand, for "ear" it is clear that a fairly significant improvement in per-

formance can be realized by eliminating the need to perform these conversions. As a

reference point, if the performance of a single benchmark improves by 25%, the overall

SPEC rating will improve by 1.3%. The other 4 benchmarks that use single precision oper-

ands (mdljsp2, swm256, tomcatv, wave5) are all compiled in Fortran, which does not co-

erce data into a double precision representation. As a result, the CPI values for these

83

Table 3.33 Overhead for Conversions in Single Precision Benchmarks

Benchmark
Cvcles

^^„„„„ = 1.0
and 9c Reduction

Cvcles
forC/>/f(Ml,rl=1.25

and 9c reduction

Cvcles

and % reduction

alvinn
66.35M
0.00%

66.35M
0.00%

66.35M
0.0%

ear
41.93M
16.5%

39.68M
20.6%

37.83M
24.7%

benchmarks already assume that one of the two approaches just described has been em-

ployed in order to avoid generating additional conversion instructions. Conversions are not

significant for any of these Fortran programs, accounting for less than a few percent of all

instructions. Across all 5 single-precision benchmarks, these alternatives for handling sin-

gle precision numbers can improve performance by no more than about 5%. It is interesting

to note that the Multi-Titan FPU [Jouppi88] operates only on double precision numbers and

that the RS/6000 internally converts from single to double operands prior to performing an

operation.

The IEEE 754 specification also recommends that the extended format be included

for the widest basic format. This leads to the following combinations: single and extended

single, double and extended double, single and double and extended double. However, in

order to follow this and support the double precision format, it would be necessary to have

a datapath width of more than 80 bits for the extended format. It is possible that having an

extended format might be used to reduce exceptions in sensitive pieces of code. However,

an extended double format is just too costly in terms of hardware for the integration con-

straints of GaAs, and is probably not justified considering how infrequently it would be

used.

3.10 Simulation Accuracy Issues

Although the Aurora HI design implements static branch prediction, the simulator

does not model this feature, instead assuming perfect prediction. The actual performance

of the processor will be lower than what has been presented so far, and an estimate for the

impact of miss-predicted branches is presented. The combination of simulation speed and

84

size of the design space to be explored constrain the runtime of any given experiment. The

effect of simulating only the first 50 million instructions is examined and sampling is dis-

cussed as a means of improving simulation speed and accuracy.

3.10.1 Branch Prediction

The Aurora III architectural simulator does not model either a static or dynamic

branch prediction policy. Consequently, all branches are assumed to be predicted correctly

and no effort is made to simulate the effect on CPI of recovery due to miss-prediction.

However, the measured values for CPI can be derated by using a simple relationship:

rt>i _ /"Dj , mm branch instructions miss predicted branches {-rinew ~ <~rjoi<t+ (^r'oid' —:—: 7- —z r~- : • cycles needed to restart) instructions branch instructions

Table 3.34 summarizes the penalty for several choices of prediction rate and pipe-

line depth, assuming an initial CPI of 1.3. The Aurora m design has a pipeline depth such

that restarting issue after a miss-predicted branch will require squashing 3 cycles of instruc-

Table 3.34 Effect of Branch Prediction on CPI = 1.3 (New CPI and % Change)

Prediction Accuracy
for Integer (25% branches) and

FP (5% branches)

2 Cycle Miss
Predict Penalty

CPI
% Change

3 Cycle Miss
Predict Penalty

CPI
% Change

4 Cycle Miss
Predict Penalty

CPI
% Change

5 Cycle Miss
Predict Penalty

CPI
% Change

2-Level History Table (0.96) 1.326
2.0

1.339
3.0

1.352
4.0

1.365
5.0

2-Bit Counter (0.89) 1.372
5.5

1.407
8.3

1.443
11.0

1.479
13.8

1-Bit Counter (0.83) 1.411
8.5

1.466
12.8

1.521
17.0

1.576
21.3

BTFN (0.61) 1.554
19.5

1.680
29.3

1.807
39.0

1.934
48.8

2-Level History Table (0.98) 1.303
0.2

1.304
0.3

1.305
0.4

1.306
0.5

2-Bit Counter (0.96) 1.305
0.4

1.308
0.6

1.310
0.8

1.313
1.0

1-Bit Counter (0.94) 1.308
0.6

1.312
0.9

1.316
1.2

1.320
1.5

BTFN (0.71) 1.338
2.9

1.357
4.4

1.375
5.8

1.394
7.3

üons that are currently in execution. Branches for integer code occur 25* oi the time and

5% for floating-point programs [Yeh93]; this is related to the observation thai basic block

size is much larger for floating-point code than for integer code. There are numerous pre-

diction policies, including: 1) two-level history table, 2) 2-bit history counter. 3) software

profiling (static), 4) 1-bit counter, 5) backward-taken, forward-not-taken (static), 6) always

taken (static). Table 3.34 focuses on the first, second, fourth, and fifth of these policies,

since these represent a reasonable range of possible prediction rates. Clearly, a more deeply

pipelined machine needs to have a better (and possibly more costly) prediction policy.

However, even for the worst policy, floating-point CPI increases by only 4.4% for the Au-

rora m FPU. Losses in CPI due to miss-predicted branches are offset to some degree by the

positive effects that are not modeled in the simulator, such as support for both double-word

loads/stores and 64 floating-point registers.

3.10.2 Sampling and Simulation Speed/Accuracy

With the design trade-offs all dependent on simulation results, one is naturally in-

terested in the accuracy of trace-driven simulation and whether runtime can be reduced.

The experiments presented depend on results that have been collected from simulating the

first 50 to 100 million instructions for each benchmark. We need to know whether the be-

ginning portion of a program is representative of the entire runtime, especially considering

the possibility that these first instructions may comprise one-time initialization events?

Short of executing and simulating the entire program, the accuracy of the results can be in

question. Closely tied to this issue is the problem of constraining how long it takes to per-

form an experiment. The total runtime can grow rapidly as one considers different points

within a design space across a broad set of benchmarks. Sampling is a technique originally

proposed for cache simulations in order to address these concerns[Laha88, Liu93, Poursep-

anh94]. Extending this approach, instead of running continuously for a certain number of

instructions the simulator would start sampling at different times, ending each time after

some number of instructions. This sampled instruction trace might be read from a file, al-

though this would increase network traffic over taking traces directly from program execu-

86

tion, which would be problematic if numerous machines are running simulations in

parallel. Alternatively, the trace might still be generated on-ihe-fly and the simulator turned

on/off at appropriate intervals. The main bottleneck for trace-driven simulation is the speed

of the simulator itself, not how long it takes to execute the benchmark: for example, current

machines are fast enough to run many SPEC benchmarks in only a few tens of seconds. In

order to avoid inaccuracies that might result from cold-start cache effects, hit rates for var-

ious cache structures (instruction, data, tlb) are derived for each benchmark and are applied

to the sampled instruction and data traces. The accuracy of sampling can be correlated to

long instruction runs through the use of certain comparison metrics. These include:

1. The number of integer and floating-point instructions per basic block. This is a mea-

sure of the distance between branches.

2. The frequency of different instruction types.

3. Cycles per instruction (CPI).

4. Breakdown of stalls and average latencies for the commonly occurring instruction

types.

Table 3.35, Table 3.36, and Table 3.37 evaluate the error involved in only running

for the first 50 million instructions of 4 benchmarks by comparing these metrics against

longer runs of 1 billion instructions. Three of the four benchmarks experience only very

small differences in CPI and cache hit rates; "spice2g6", the exception, experiences both

higher cache miss rates and more branch-on-FPU stalls.There is more variation among the

3 floating-point stall sources for the different benchmarks; however, error for floating-point

branch stalls is fairly small for the application (hydro2d) which is most impacted by this

type of stall. For the other benchmarks, these 3 stalls each occur less than 20% of the time

and often do not directly affect CPI because useful integer activity is performed during the

floating-point stall. Instruction frequency changes only slightly for "fpppp" and "hydro2d",

but changes more for the other 2 benchmarks. The occurrence of load and conversion in-

structions increases for the "ear" benchmark on longer simulations, but this does not trans-

late into a large difference in CPI. The "spice2g6" benchmark demonstrates that there are

87

Table 3.35 Comparison Metrics (50M / IG Instrs. and <7c Difference)

Metnc ear fpppp hydro2d spice2c6

FP Instructions per
Basic Block

4.48/5.92
32.14%

27.47/24.67
-10.19%

4.80/4.82
0.42%

0.64 / 0.25
-60.94%

Instructions per Basic
Block

9.17/9.47
3.27%

33.56/30.82
-8.16%

8.50/8.53
0.35%

5.59/7.98
42.75%

CP1 1.005/1.011
0.06%

1.024/1.020
-0.39%

1.287/1.332
3.49%

1.624/1.387
14.59%

I-cache Hit Rate 99.90/99.93
0.00%

78.00/78.71
0.91%

99.94/99.97
0.003%

97.57/99.28
1.75%

D-cache Hit Rate 99.14/99.92
0.79%

99.87/99.95
0.08%

92.47 / 92.49
0.02%

90.66 / 94.25
3.96%

Iq/LqFull
(% cycles)

9.97/14.52
31.34%

1.31/1.48
12.98%

1.90/1.85
-2.63%

0.00 / 0.00
0.00%

be lx Wait
(% cycles)

9.99/16.55
65.67%

1.43/1.74
21.68%

31.92/34.21
7.17%

17.76/7.29
58.95%

Write Cache Eviction
(% cycles)

0.0/0.0
0.00%

0.01/0.01
0.00%

0.00/0.00
0.00%

0.00 / 0.00
0.00%

Table 336 Functional Unit Latencies (50M / IG Instrs. and % Difference)

Functional Unit ear fpppp hydro2d spice2g6

Load Unit 22.20/28.40
27.9%

18.30/21.26
16.2%

16.64/17.56
5.5%

13.38/15.74
17.6%

Store Unit 22.89/23.15
1.1%

13.93/16.05
15.2%

16.50/17.31
4.9%

8.89 /12.74
43.3%

Add Unit 28.87/29.75
3.0%

20.13/23.35
16.0%

19.90/20.76
4.3%

10.67/19.15
79.5%

Multiply Unit 28.55/29.70
4.0%

18.01/21.10
17.2%

19.21/20.01
4.2%

14.64/19.77
35.0%

Divide Unit 24.26/26.87
10.8%

40.59/40.20
1.0%

41.04/41.90
2.1%

23.51/27.95
18.9%

Conversion Unit 25.12/27.68
10.2%

8.86/8.99
1.5%

6.64/6.76
1.8%

9.41 /13.37
42.1%

Comparisons
8.18/9.17

12.1%
12.71 /11.02

13.3%
11.03/12.04

9.2%
14.58/17.34

18.9%

Miscellaneous 27.92/29.06
4.1%

8.98/7.86
12.5%

8.93 / 9.94
11.3%

5.99/15.20
153.7%

SS

Table 3.37 Dynamic Instruction Use (50M / IG Instruction Run-Lengths)

Instruction ear fpppp hycro2d spicc2g6

FP_LOAD
0.10/0.15

46.08
0.41/0.41

-0.73
0.26/0.26

0.00
0.08/0.02

-78.31

FP_MT
0.01 /0.00

-92.31
0.00/0.00

-50.00
0.00/0.00

0.00
0.00/0.00
-100.00

FP_STORE
0.07/0.08

20.29
0.16/0.15

-5.56
0.08/0.08

0.00
0.00/0.00

-50.00

FP.MF
0.00/0.00

0.00
0.00/0.00

0.00
0.00/0.00

0.00
0.00/0.00

0.00

FP_ADD
0.04/0.06

48.65
0.10/0.10

-0.96
0.02/0.02

0.00
0.00/0.00
-100.00

FP.MULT
0.05/0.07

46.94
0.12/0.12

-2.40
0.06/0.06

0.00
0.00/0.00

0.10

FP_DIV 0.01/0.00
-92.31

0.00/0.00
-50.00

0.00/0.00
0.00

0.00/0.00
-100.00

FP_CONV 0.17/0.21
24.70

0.00/0.00
0.10

0.00/0.00
0.00

0.00/0.00
-100.00

FP_COMPARE
0.00/0.00

0.00
0.00/0.00

0.00
0.00/0.00

0.00
0.00/0.00

0.00

FP_ABS 0.00/0.01
55.56

0.00/0.00
0.00

0.00/0.00
0.00

0.00/0.00
0.40

FP_NEG 0.00/0.00
0.00

0.00/0.00
0.00

0.00/0.00
0.00

0.00/0.00
0.00

FP_MOV 0.00/0.00
0.00

0.00/0.00
0.00

0.04/0.04
0.00

0.00/0.00
0.00

FP_BC1X 0.01/0.02
42.86

0.00/0.00
100.00

0.04/0.04
0.00

0.02/0.00
-71.43

INT.LOAD 0.15/0.15
-0.65

0.42/0.42
0.48

0.26/0.26
0.39

0.22/0.20
-8.60

INT.STORE 0.03/0.00
-92.31

0.00/0.00
133.33

0.00/0.00
-12.50

0.06/0.07
21.43

INT.ALU
0.24/0.20

-13.98
0.12/0.11

-6.03
0.26/0.26

-0.39
0.25/0.38

53.23

INTJRANCH
0.00/0.00

0.00
0.00/0.00

0.00
0.00/0.00

0.00
0.00/0.00

0.00

INT.NOP
0.09/0.07

-30.11
0.04/0.05

23.81
0.09/0.09

0.00
0.20/0.14

-27.18

Avg Difference
(for instr.s with a
frequency > 5%)

18.74% 2.50% 0.20% 28.19%

89

cases where simulating only an initial section of a program may lead to inaccuracies. The

Aurora III simulator does not make use of sampling, but probably should do so in order to

increase both confidence and simulation throughput.

3.11 Evaluation of Final FPU Designs

In this section, the wide range of architectural trade-offs presented in this disserta-

tion are compared via five Aurora IE FPU implementations, including a 250MHz baseline

FPU, a design which improves CPI through more complex architectural features, a simpler

design which achieves a higher clock frequency, and two designs which project the perfor-

mance gains obtained from the process technology improvements.

3.11.1 Turning Off Architectural Features to
Increase Clock Frequency

There are many choices to be made in implementing a processor design, and com-

pletely different approaches can often achieve similar performance. This is quite evident in

the two prevalent styles for building microprocessors, one which emphasizes the extraction

of instruction-level parallelism through greater complexity and the other which focuses on

simplifying a design in order to more easily benefit from technology improvements. The

Sun UltraSparc processor is typical of the former, while the Dec Alpha embodies the latter

design philosophy. Some designs adopt characteristics of both approaches, such as the

MIPS R10000. Similar trade-offs were considered for the Aurora HI design; it is interesting

to consider whether a simpler design might have achieved the same level of performance.

Consider the following summary of critical paths (all having a path-length of 20 gates) for

the current FPU design:

1. write enable for destination register field of ROB => destination register field of ROB => scoreboard

translation table, containing most recent ROB reference

2. add unit exception signals => selection of exceptional constant => write exception field of ROB entry

3. instruction queue head and tail pointers => logic that derives the queue full signal

90

4. register field for instruction queue entry => scoreboard read port for ROB lac => read port for valid

bit of ROB entry

5. size of data in ROB entry => data dependency logic => issue determination => reserve result bus

6. size of data in ROB entry => data dependency logic => issue determination => logic to set scoreboard

busy bit and ROB tag

7. size of data in ROB entry => data dependency logic => issue determination => write translation table

which supports precise memory exceptions

8. size of data in ROB entry (single or double precision) => data dependency logic => issue determination

=> signal to stall issue while writing the status register

9. ROB valid => data dependency logic => issue determination => reserve ROB entry (update tail

pointer)

10. ROB valid => data dependency logic => issue determination => selection of rounding mode

11. ROB valid => data dependency logic => issue determination => selection of ROB entry to be

reserved upon entry

12. ROB valid => data dependency logic => issue determination => reserve store queue entry

13. ROB valid => data dependency logic => issue determination => advance head pointer of load queue

14. ROB valid => data dependency logic => issue determination => signal which initiates an arithmetic

comparison

15. ROB valid => data dependency logic => issue determination => signal to initiate multiply

16. integer memory exception -> translation table to find floating-point ROB entry corresponding to

memory reference => signal to clear all ROB valid bits

17. head entry of ROB generates an exception => logic to clear state throughout FPU and discard instruc-

tions that follow the exceptional one

18. counter to time completion of a divide operation => divide unit is free => issue determination => ini-

tiate divide

19. external instruction transfer type => predecode logic => create result class, which indicates whether

the instruction produces a result

20. external instruction transfer type => logic for writing an instruction queue entry

91

These paths are representative, but not comprehensive, of the overall set of critical

paths in the FPU design and many of these are driven by additional inputs which originate

from other sections of the chip. Consequently, there are more parallel paths that derive

these signals and are of critical gate depth. For example, since operands may be found ei-

ther in the register file or reorder buffer, the valid bits for both constructs are used to eval-

uate whether data dependencies prevent instruction issue; the logic depth is similar for

reading the valid bits from both the scoreboard and reorder buffer. Similarly, there are a

number of constraints besides data dependencies that are used to determine whether issue

is possible and these are not explicitly represented in the above list. Instead, only one path

to each output signal is shown. Also, this list does not include any paths internal to func-

tional units, of which there are many.

This list suggests that a number of paths are limited by the logic depth of the score-

board and reorder buffer. Several designs were evaluated for each of these constructs and

the versions that were chosen are close to optimal for the constraints of GaAs DCFL. For

instance, a read port on the scoreboard which produces a result in 7 levels of logic is imple-

mented using a stage of multiplexors followed by a tristate gate. Leakage currents in GaAs

constrain the amount of fanin that can be tolerated by a tristate gate, whereas in another

technology, such as CMOS, several levels could be removed by constructing the read port

completely from tristates. In addition, the gate-depth for control logic tends to be greater

for GaAs since the DCFL family efficiently supports only NOR-NOR logic. For a complex

design which supports most features of the MIPS ISA, the goal of 20 gates per clock phase

is fairly aggressive and even the application of significant additional human resources

could only reasonably reduce this by approximately 2 gate levels.

So in what ways can the design be made simpler while still attaining the same level

of performance? An in-order issue and completion policy would remove the need for a re-

order buffer. As mentioned earlier, the reorder buffer provides several benefits; those that

are relevant to this discussion are: 1) retaining the in-order sequence of instruction for an

out-of-order completion policy, and 2) providing support for precise memory exceptions.

The former is not necessary for in-order completion and the latter can be handled by trans-

92

Table 3.38 Percentage of Memory References that Miss in the IPL Mini-TLB

Benchmark

_ _
Cr Memor.
References

alvinn 0.191

doduc 0.403

ear 0.195

fpppp 0.081

hydro2d 4.813

mdljdp2 0.664

mdljsp2 0.546

nasa7 1.034

ora 0.002

spice2g6 8.425

su2cor 5.569

swm256 3.175

tomcatv 6.827

wave5 0.271

Avg Arithmetic 2.3

ferring floating-point instructions which follow a memory reference only when it is deter-

mined that a page fault cannot occur. Most memory references hit in the small first level

TLB that resides in the IPU (see Table 3.38), and will not stall the transfer of floating-point

instructions more than a single cycle. As a result, this requirement should have only a mod-

est effect on performance, especially in light of the high integer content of many floating-

point programs. For a technology with higher integration levels, MMU functionality would

be contained on the same chip as the IPU and all memory access exceptions could be re-

solved in a single cycle. It is also interesting to note that removing the current reorder buffer

would reduce chip area by approximately 20%. The reorder buffer is not as area-efficient

as the register file, which is based on a 6-transistor memory cell and sense-amplifier read

ports; instead, multiplexors and tristates are used in the reorder buffer for write and read

access. The reorder buffer contains 8 entries, each with 89 bits for a total of 712 bits of state,

93

versus 2048 bits for the register file; still the reorder buffer is 85^ larger than the register

file. A future version of the FPU should base most or all of the reorder buffer design on the

denser register file style.

A scoreboard may still be the most efficient way to resolve data dependencies, but

issue logic would be simpler due in part to the fact that dual issue would not be possible; a

simple in-order completion policy could not simultaneously issue two instructions to func-

tional units that have different latencies. The omission of a reorder buffer would also sim-

plify the issue logic needed to detect data dependencies, since operands could only

originate from the register file. In fact, there are very few constraints that could prevent is-

sue, and all are fairly easy to resolve:

1. an instruction is being executed in a different functional unit than that needed by the

instruction to be issued,

2. the current instruction depends on the result of an outstanding instruction,

3. the current instruction uses a non-pipelined functional unit which is busy executing

a preceding instruction,

4. for a load instruction, the head entry of the load queue does not contain valid data,

5. for a store instruction, there are no free entries in the store queue.

Together, these changes would allow a new logic depth target of 15 gates per clock

phase, which corresponds to an overall reduction in path length of 25%. The register file

access time would also need to improve, from the current 1.8ns to something closer to

1.4ns. This may well be attainable since all read/write decoding is currently performed in

the same clock phase as the access and it could be moved to the phase that precedes the

access, removing 400ps to 500ps from these critical paths. This would need to be explored

further.

Critical paths within functional units constitute another issue. It is often difficult to

arbitrarily add pipeline latches to a design to increase the clock frequency. So even if path

depth for other parts of the design is reduced by a quarter, it may be difficult to do so within

94

the functional units. For example, consider the 53-bit mantissa adder which contributes to

at least one critical phase for each of the functional units. This adder is already pipelined so

that the first 3 to 4 gates of the cam' and sum logic are generated and then latched. Adding

latches elsewhere in the adder can significantly increase area because the logic fans out be-

fore converging back to produce a single 53-bit result. Other constructs, such as leading one

prediction and sticky-bit logic, can grow substantially in size due to deeper pipelining and

more complicated routing. As the area for these functional units increases, all paths are im-

pacted since global routing capacitance increase. As discussed earlier, not pipelining the

functional units has only a modest effect on overall performance. Doing this and adding an

extra cycle of latency to each unit would allow a higher clock frequency. The analysis

which follows will examine these approaches, assuming that deeper pipelining will degrade

cycle time by 10%.

The last 2 columns of Table 3.39 compare the two simpler designs which achieve a

higher clock frequency to the baseline FPU implementation (column 1). The design which

supports pipelined functional units has 19.8% lower performance and the non-pipelined de-

sign has 12.2% lower performance. However, the simpler designs would have been easier

to implement, resulting in a shorter design cycle for the FPU. The simpler designs could

benefit more quickly from process technology improvements since there are fewer critical

paths to be reevaluated.

3.11.2 SPECfp92 Comparisons

This section summarizes the current state of microprocessor performance, via

SPEC ratings (refer to Table 3.39, Table 3.40, and Table 3.41). In addition, 5 versions of

the Aurora HI FPU are listed, including the 2 discussed in Section 3.11.1. In addition to the

250MHz baseline design, the other 2 versions are projections of the baseline in light of rea-

sonable technology improvements. The process technology that supports the FPU design

has not changed in over 2 years but a newer version should be available soon and it is in-

teresting to speculate on the impact that this will have on the floating-point performance of

the Aurora HI design. These improvements include both finer interconnect pitches and fast-

95

Table 3.39 Aurora III SPECfp92 Comparison

Benchmark
(50M Instructions)

Aurora III
IOOO
base

250MHz

Aurora III
IOOO
base

300MHz

Aurora III
IOOO
base

350MHz

Aurora III
lOIO

pipelined
280MHz

Aurora III
IOIO

non-pipelined
310MHz

alvinn 220.5 264.7 308.8 209.1 231.5

doduc 199.6 239.6 279.5 167.6 184.0

ear 371.7 446.0 520.3 279.6 296.9

fpppp 294.0 352.8 411.6 191.1 210.6

hydro2d 253.1 303.8 354.4 232.9 257.4

mdljdp2 288.4 346.0 403.7 266.1 289.0

mdljsp2 142.6 171.1 199.6 130.9 141.6

nasa7 453.6 544.4 635.1 270.2 299.3

ora 191.6 229.9 268.3 157.4 172.0

spice2g6 138.6 166.3 194.0 141.2 156.4

su2cor 426.5 511.8 597.1 336.0 366.8

swm256 272.4 326.9 381.3 162.5 176.3

tomcatv 369.3 443.2 517.1 264.2 290.7

wave5 171.8 206.1 240.5 153.8 169.2

SPECfp92 253.2 303.8 354.4 203.1 222.3

SPECint92 na na na na na

% Change from
250MHz baseline

20.0 40.0 -19.8 -12.2

er intrinsic gate switching speeds, which together should decrease the average loaded gate

delay by 10% to 40%. It is assumed that register file access time will also decrease, al-

though the amount may not directly track gate switching speeds.

Further, there are a number of features of the FPU that are not accounted for in these

simulation-based results, some of which should enhance overall performance:

1) Better code reordering that reflects the unique characteristics of the Aurora IH

design; the compiler used for these experiments was tailored to the MIPS R2000/

3000 scalar architecture. This point has been discussed briefly in the context of float-

96

Table 3.40 SPEC Ratings for Current Microprocessors

Benchmark
(50M

Instructions)

SGI
R8000
(TFP)

75MHz

SGI
R10000
200MHz

*

DEC
21064

200MHz

DEC
21164

300MHz
•

IBM RS'
6000
580

62.5MHz

IBM
Power 2

71.5MHz

Sun
SuperSp2
90MHz

Sun
UiraSp

167
•

alvinn 793.6 na 436.9 na 206.2 na na na

doduc 157.2 na 131.0 na 88.6 na na na

ear 596.6 na 587.6 na 174.2 na na na

fpppp 279.8 na 193.3 na 172.6 na na na

hydro2d 484.6 na 216.8 na 126.7 na na na

mdljdp2 290.5 na 153.1 na 124.2 na na na

mdljsp2 116.1 na 75.1 na 57.3 na na na

nasa7 608.3 na 280.5 na 203.9 na na na

ora 236.2 na 156.2 na 103.1 na na na

spice2g6 85.2 na 100.2 na 73.7 na na na

su2cor 515.4 na 291.9 na 208.1 na na na

swm256 361.8 na 226.8 na 95.8 na na na

tomcatv 672.6 na 304.6 na 210.3 na na na

wave5 180.6 na 115.3 na 69.2 na na na

SPECfp92 310.6 600* 200.1 500 124.8 274 147 305*

SPECint92 108.7 300* 132.7 330 59.2 134 135 275*

Designs marked with a "*" have been announced but are not yet commercially available.

ing-point compare sequences; efforts elsewhere have shown performance gains of

20% to 30% [Johnson91] for code that has been compiled for a specific processor

implementation.

2) The benefit of having twice as many floating-point registers as the R3000/R4000

microprocessors. This should somewhat alleviate the long 3-cycle primary cache

latency by providing more local storage for intermediate results.

3) Branch prediction is not modeled, but as discussed in Section 3.10.1, it should have

only a small negative impact on floating-point applications, since basic block size is

97

Table 3.41 SPEC Ratings for Current Microprocessors, continued

Benchmark

Intel
Pentium

815
lOOMHz

Intel P6
133MHz

»

IBM
Power 2

71.5MHz

PowerPC
620

130MHz

PA-RISC
HP755
99MHz

PA-RISC
8000

200MHz
•

AMD K5
lOOMHz

alvinn 170.5 na na na 176.8 na na

doduc 79.1 na na na 142.0 na na

ear 210.7 na na na 258.4 na na

fpppp 117.5 na na na 237.1 na na

hydro2d 83.0 na na na 166.1 na na

mdljdp2 95.2 na na na 192.1 na na

mdljsp2 44.9 na na na 92.3 na na

nasa7 60.7 na na na 123.3 na na

ora 93.7 na na na 276.9 na na

spice2g6 64.9 na na na 91.9 na na

su2cor 56.9 na na na 177.2 na na

swm256 45.1 na na na 79.3 na na

tomcatv 77.7 na na na 138.0 na na

wave5 55.8 na na na 112.1 na na

SPECfp92 80.6 >200* 274 300 150.6 >550* 105*

SPECint92 100.0 >200* 134 225 80.0 >360* 130*

Designs marked with a "*" have been announced but are not yet commercially available.

quite large.

4) The benefit of supporting double-word loads and stores was estimated in

Section 3.7.1; it remains to be verified.

5) Operating system calls are not modeled by a PDCIE-based approach to architectural

simulation. For the SPEC benchmarks, the OS is entered on average only 1.5% to

2% of the time; this is less than what is realistic for current multi-media applications.

6) Hardware support for square root can result in a 7% to 9% improvement in perfor-

mance, but has not been implemented in the current design.

98

3.11.3 Final design

Appendix A contains a layout plot of final FPU design, which can be summarized

as follows:

- 250 MHz, 300 SPECfp92 rating

- 500K transistors

- 16x16 mm2

- 40 instructions (MIPS R4000), including double-word loads/stores and integer

multiply

- Iterative 5 cycle Wallace tree multiplier (4-2 adders)

- Pipelined 3 cycle add unit

- Pipelined 2 cycle conversion unit

- Iterative 19 cycle SRT-8 divide unit (not included with this version)

- IEEE-754 compliant (4 rounding modes and exceptions)

- Precise and higher performance real-time exception modes

- Issue policy: in-order issue, out-of-order completion, 2 instructions per cycle

- Data prefetching with unity stride

- Instruction queue: 6 entries, predecoded

- Load queue: 2 entries

- Reorder buffer: 8 entries

- Store queue: 2 entries

- Result busses: 2

- 5 students - 2 years

Verification via random testing

99

- Functional units verified against actual workstation (>5M operations per unit)

- FPU verified using self-checking random instruction sequences (>200M

instructions)

Design-for-test includes:

- 5 scan chains (4 data, 1 control)

- Full read/write access to register file

- Individual instructions are testable via scan paths

- Speed testing requires only the 2 clock signals to operate at high frequency

CHAPTER 4

Implementation of a High
Performance Floating-

point Unit

The culmination of this work has been the design of an IEEE-754 compliant double

precision floating-point unit as part of the Aurora HI processor. The chip was designed in

a l.Oum (0.6^im effective gate length) GaAs direct coupled FET logic process. The discus-

sion will focus first on trade-offs for the various functional units that are appropriate for the

circuit and integration constraints of GaAs. These constraints include low fanin, greater

logic depth due to the use of only NOR-NOR logic, the absence of dynamic logic struc-

tures, a limited use of pass-gate logic, and lower layout density that results from a ratioed

logic family. Much of the motivation for the functional unit designs originated with work

done elsewhere, but has been extended in order to accommodate differences that result

from using a high-performance GaAs technology. Also, a number of corrections to the orig-

inal references were discovered during the verification of these units. Further, the conver-

sion unit that is described is an original design that can execute any of the 6 conversion

operations called for in the IEEE-754 specification with a latency of 2 cycles. The second

part of this chapter will focus on a set of general issues that arise while designing a floating-

point unit, including floating-point loads and stores, the use of predecoding to reduce crit-

ical path depth, and reasonable design-for-test features.

4.1 Add Unit

The IEEE-754 compliant double precision floating-point addition unit supports the

four rounding modes specified by the IEEE standard: round to nearest, round to ~, round

to -eo, and round to zero. The add unit design is fully pipelined, with a latency of three 4ns

100

clock cycles, and consists of 50,000 transistors.

4.1.1 Adder Implementation

As discussed in the section on circuit issues, GaAs DCFL presents several challeng-

es compared to CMOS design, including low noise margins, the use of NOR-only logic,

and low fanin. In light of these technology issues, a number of different adder implemen-

tations were evaluated for the mantissa addition, including carry skip, 4-bit carry look-

ahead, and Ling-modified carry-select designs.

The carry-skip adder was not to be appropriate for several reasons [Turrini89], [Ma-

jerski67], [Lehmanöl]. The small fanin of GaAs increases the number of gate levels needed

for the skip logic. This is especially true for implementing multiple levels of skip logic,

which is necessary to achieve the lowest critical path lengths. Intrinsic gate speeds in GaAs

are fast (70 ps for an unloaded inverter), but interconnect and fanout increase the average

delay to about 100 ps per level; an adder such as the carry-skip design with greater than 15

levels of logic is unacceptable on a chip with a target of 20 gates per clock phase. The NOR-

only limitation is also problematic, since there are instances where the lack of a single-level

AND gate leads to additional levels of logic. The carry-skip adder requires that nodes along

the carry chain be reset to a logic low value prior to performing an addition. In other tech-

nologies, this can be handled efficiently by pre-discharging these nodes. In GaAs this is not

feasible because of the high leakage current and the diode gate of the MESFET transistor.

Consequently, a mux-based approach is necessary, leading to an increase in the levels of

logic. Finally, delay through a carry-skip adder is proportional to the square root of the

number of bits, versus a log relationship for a look-ahead adder. As the number of bits in-

creases, there is a cross-over point, beyond which a look-ahead approach is faster; the 53-

bit mantissa adder used throughout the FPU is more efficiently implemented using a look-

ahead approach. The FPU needs several sizes of adders and it was desirable to choose a sin-

gle adder design that could be extended to support a variety of bit widths.

The Ling-modified adder is shown in Figure 4.1. The 53 bit wide version in this fig-

ure is divided into six blocks, each with a width of 9 bits. Each block is further divided into

102

IJG -— L J L. _üü
i |]

014

»-kits

ou

S-fclta

013

)-h4ta

\
Xatr»»la«k Carry (ofe.tb)

kll b)-1 hi«

I-X*S ■ (]>

■(!«)
bill)

El E
■lo«k S

t-biU

ai« loiil bu\

Bleak 4

»•bit«

cm abm

n n n foil aio a* I

■leak 3

»•bit«

CO) «*(»)

000
■loek 3

l-Uti

e<j| abii)

000
■look 1

t-biea

CU) Obd)

n n n I oa I oi I oo

»look o

•-bit«

C(0> Ob(0)

Olobsl Carry Look-ahaod

Figure 4.153-bit Ling Adder

3-bit groups, with each block having 3 groups. The adder uses a carry-select algorithm

within each group and each block. A ripple sum is created for 3-bit groups for both a carry-

in of 1 and a carry-in of 0. These pairs of three bit sums are then fed into a multiplexor to

form the 9-bit block sums. The block carry generate and propagate signals are used to form

the 9-bit block sums. The six block sums are then fed into a second level of multiplexors to

create the final sum. The global generate and propagate signals are then used to select the

appropriate 9-bit block for the final sum. The group-generate equation is:

G5 = «17 + 8i6Pn + SisPiePn

The Ling technique [Ling81] uses gi = Pjgi to simplify the generate equation:

G5 = Pll («17 + Sl6 + 8l5Pi6)

G5 = p„G 17u5

103

Expanding the c' term gives:

The primary advantage of this adder comes from expressing the local group carry

generation in terms of G* , a signal generated from 4 terms of 10 inputs. Traditional cany

look-ahead adders produce group generate signals in 7 terms of 24 inputs. Fanin limitations

dictate an optimum group size of 3 bits.

The analysis of critical paths for the Ling-modified adder and a group-4 carry look-

ahead adder were based on [Stritter90]. A "direct search" algorithm was used to minimize

functions of numerous variables. In the case of the CLA-4 adder, there are 14 independent

variables, one for each of the enhancement transistor widths that lie along the top critical

path. The algorithm focuses on one variable at a time and evaluates f(x,xi), f(x,xi - delta *

ei), and f(x, xi + delta * ei), where x represents all variables not currently being evaluated,

xi is the current variable being tested, delta is the step size, and ei is a unit-vector for the

variable xi. One of these three expressions will result in the smallest value for the function

and this is an indication of a direction that warrants further exploration. Constraints are en-

forced by adding penalty values to the primary variable when constraints are violated. In

the CLA-4 optimization, we for example, calculated the enhancement width for each level

to derive the smallest delay for a given power dissipation. Thus, power was a constraint;

whenever the calculated widths obtained generated too much power for the path, the overall

delay was penalized. This behavior forces the algorithm to move back to transistor widths

which do not violate the power budget.

Delay calculation is performed using two-dimensional macro-models [Kayssi93a].

The macro-model derivation results in expressions for delay and output slew rate for each

type of gate as a function of fanin, fanout, interconnect capacitance and input slew rate. The

form of the expressions are:

104

Rising output:

delta = Tln x (c0-i- c, xy)

Falling output:

delta = 7"(n x (c0 + c, x y + c2x^)

Tou, = T,nx (c3 + cAxy + c5xfy)

Where:

y = Clota/(WExTw)

C,o,ai=Cin,
+ l<iXLW+k2xWE

WE = enhancement width of driving gate

WL = sum of enhancement width loads

cint = interconnect capacitance

cO through c5 are fitting coefficients

There are different coefficients for each type of gate being modeled (i.e., fanin). In-

terconnect is represented as a lumped capacitance; this approach is quite accurate for the

shorter lengths of interconnect seen within a combinational block. The coefficients are ob-

tained by running a fitting algorithm on the results of numerous HSPICE simulations. An

empirical relationship for power as a function of enhancement gate width was also obtained

using HSPICE.

The first experiments with both the CLA-4 and Ling adders raised several issues.

First, the algorithm has a tendency to choose widths that result in large fanouts. Conse-

quently, it was necessary to include a fanout constraint. Whenever the fanout for a certain

set of widths exceeds a chosen threshold, the overall delay is penalized. The program then

begins decreasing the width of the transistor in question. Second, there was a question about

the repeatability of results when the initial starting point is changed. By adding an option

to randomly generate the initial widths from a reasonable range, the overall optimized delay

105

Table 4.1 Comparison of Path-Delay for Optimization Program and HSPICE

Adder Type
Optimization

Program
ins)

HSPICE
(ns)

Error

CLA-4 1.515 1.659 9.59-

Ling 1.237 1.341 8.49c

was found to be consistent within 3% between runs even though the exact partitioning of

delay varied somewhat. Finally, there was a question about the accuracy of delays calculat-

ed by this approach. A comparison was made between the prediction of the optimization

program and that obtained using HSPICE. For the worst case path through each adder, the

results are summarized in Table 4.1. In each case the specified maximum power was 400

mW. The error of less than 10% is quite good, but might be improved. In particular, the

coefficients were generated only up to a fanout of four. For larger fanouts, extrapolation

was utilized and the non-linear nature of the fitting made the error more significant for these

cases.

To meet a 4ns clock cycle, it is necessary to pipeline the adder. This is accomplished

by generating and latching the propagate, generate, and local group carry signals during the

first clock phase; other work external to the adder would also be performed during this

phase. To reduce levels of logic, part of the function that precedes the latch was merged

into the first stage of the latch. Figure 4.2 shows the merged NOR-latch which generates

the first stage of generate logic for the adder. When the clock changes state, a transition can

occur for only one of the two nodes A and B, which feed the cross-coupled pair. Other ap-

proaches for merging logic with a latch are possible, but care must be taken to avoid those

InO—sr^N

Clk. 3>^>-£OQ

Figure 4.2 Merged Nor-Latch-Buffer Cell

106

that allow simultaneous transitions on both inputs of the latch pair when the clock changes.

This sort of clock hazard is dependent on the layout parasitics of the cell, which, if not care-

fully controlled, can reduce the yield of this frequently used circuit.

Since rounding is merged into the mantissa addition stage, it is necessary to gener-

ate both A+B and A+B+l, requiring two copies of the latter part of the carry generation

tree. The sum logic and much of the initial carry generation logic is only implemented once.

A second carry chain adds approximately 30% to the overall transistor count of an adder.

Round to ±00 requires either (A+B and A+B+l) or (A+B+l and A+B+2,); the latter can be

realized using an additional row of half-adders prior to the mantissa (discussed below). The

various functional units that in the FPU require 5 different versions of the Ling-modified

adder, as summarized in Table 4.2.

A method that detects the potential for a long carry propagation time and that will

cause a single cycle stall in order to complete the addition was investigated [Wolrich84].

An upper bound on the probability, P, of generating a stall has been derived as:

~m + w ~2l~n + w)

P =
2W

where:

w = width of addition

Table 4.2 Ling Adder Implementations Used in FPU

Type of
Adder

Delay (ns)
Area

(um x um)
Transistor

Count

Approximate
Power

(W)

11 bit 1.01 666x909 2,264 0.328

11 bit, with 2
carry chains

1.02 914x922 2,998 0.418

32 bit 1.3 673x2133 5,913 0.856

53 bit, 2 cany
chains, lead-
ing one logic

1.6 1445x5210 16,600 2.750

53 bit, 2 carry
chains

1.5 1035x3793 13,627 1.998

107

m = total bits not included in any detection gate (low order bus)

n = width of detection gates

This idea was not pursued further for several reasons. Long mantissa adders are

needed in the add, multiply, and divide units and adding the ability to stall would compli-

cate the design for each of these units. In addition, a more complicated and potentially

slower acquisition approach for the result busses would be needed, versus the simple re-

serve-at-issue approach that was implemented. Finally, pipelining the 53-bit mantissa

adder removed this component from being a bottleneck along critical paths.

4.1.2 Add Unit Implementation

The algorithm implemented for the add unit takes advantage of several well-known

characteristics of floating-point addition (refer to Table 4.3 and Figure 4.3) [Quach90],

[Quach91a], [Quach91b], [Quach91c]. For example, the alignment and normalization steps

needed for addition are mutually exclusive. If the two operands are both positive, or their

signs differ and an alignment shift of more than one is needed, the resulting normalization

shift will be less than or equal to one. Conversely, if the signs are different and an alignment

shift of less than or equal to one is needed, the normalization shift may be greater than one.

An alignment shifter is needed for the former case, while a simple mux can be used to nan-

Table 4.3 Floating-Point Addition Algorithm

Pipeline Stage Operation

S0P1 Exponent Compare
Mantissa swap
Exponent swap

S0P2 Alignment right shift
Sticky bit determination

Guard and round bit generation

S1P1 Gen/Prop/Carry for Ling adder
Rounding logic

S1P2 Mantissa add (Ling adder)
Leading one prediction

S2P1 Complement result
Normalization left shift
Exponent adjustment

Generate exception signals

108

S0P1-

SOP:-

S1P1-

T
K

Sa

±
F>

X
J-L

I
T

Ö

Exponent AdJ Mamiiij S*ap

S0P1

Result Sign *gip2

Result Exp "zn:
SOP: S0P1

I

Exp Swap

—r~

S1P2

S2PI

Sf

-c I
S0P1-

Path Select

-c
SOP:

-L

SB

Rshifi

-L

Mux -SOP:

-SIPl

T
Prop/Gen/Carrv

T
S1P2

Exp. Offset

Exp. Adjust

SIPl

Ling Adder

LOP

>c

GRS

HZ

S1P2

Ling / Ones Compl

Lshift

Fine Adj Mux

S2P1

t ♦ j

T
Ef

S2P1 —C

Mux

ZIZ

J—SIP:

T
Ff

Figure 4.3 Add Unit

die alignment for the latter case. Normalization also requires a shifter and a mux in order

to handle both paths. By implementing two mantissa adders, one for normalization and one

for alignment, one can reduce the latency of floating-point addition to only two 4ns clock

cycles, as shown in Table 4.4. However, the simulations discussed earlier for the overall

floating-point unit architecture show that reducing the add latency by one cycle has a min-

imal effect on overall performance (approximately 1.5% improvement). Integration levels

and yields in GaAs suggest that the 16,000 transistors which comprise a 53-bit adder would

be better applied elsewhere.

As indicated in Table 4.3, three operations occur in the first pipeline stage of the

add unit. First, the exponents are subtracted to determine which operand is larger and the

amount of an alignment shift. The adder used here is 11 bits wide and supports 2 carry

109

Table 4.4 Two Cvcle Add Unit

Pipeline Siage Normalization Path Alignment Path

1 Small alignment shift
Mantissa add

Large alignment shift

2 Normalization Mantissa add
Small normalization shift

chains in order to generate both A+B and A+B+l. The exact functions produced by this

adder are:

ExpAlignQ = ExpA + ExpB

Exp'Align, = ExpA + ExpB + 1

The amount of alignment shift needed can then be generated by:

if ExpAligncarryou, shAmt = ExpAlignl

else shAmt = ExpAlign0

The mantissas are then swapped based on the carry-out of the ExpAlign adder in order to

ensure that the smaller operand is aligned to the larger one.

In the next stage, S0P2, the alignment shift occurs via a 55-bit shifter which also

generates the guard and round bits. This shifter is implemented as a cascade of two 8-input

super-buffer muxes, where the mux selects are simply the output of the preceding exponent

adder. Note that more area intensive squeeze muxes were used in order to minimize the gate

depth through the shifter, since several of the bits of the shifter are used along critical paths

for both this phase and the normalization phase. The two muxes of this shifter can shift by

(0,1, 2, 3,4,5, 6, or 7) and (0,8,16,24,32,40,48, or 56) respectively; the shifter is com-

prised of 4,989 transistors and returns a result in 500ps. The sticky-bit is also generated dur-

ing this phase through the use of a thermometer function. This logic works by creating a

vector in which the number of low order bits that are set equal the alignment shift amount.

This vector is then AND'ed with the mantissa being aligned; the result is a new vector

which represents those bits that are shifted off the low order end during alignment. An OR

tree is used on this new vector to create a single result which indicates whether any of the

bits below the least-significant-bit of the aligned mantissa are set (excluding the guard and

110

round bits, which are dealt with separately). This approach to generating the sticky bit i>

more efficient solution than the direct approach of using a 106-bit shifter. Because genera-

tion of the sticky-bit is not on a critical path, the logic to generate it was synthesized from

a behavioral description of the pertinent equations. Some of the initial logic needed for

rounding determination, including the generation of the guard and round bits, is also pro-

duced in this pipeline stage. In verifying this design, I discovered several errors with the

approach described in [Quach91a]; the final equations for the guard and round bits are list-

ed in Appendix B.

In the next stage, S1P1, the local group-generate signals for the carry tree and the

initial XOR results for the sum are produced and latched. As described earlier, this acts to

split the operation of the mantissa across two clock phases. The inputs to this stage of the

adder are the aligned operands or one of several transformed variations of the operands.

The most common of these is the complement of one of the operands when the operation

being performed is subtraction. A somewhat more complex case involves the two round-

to-infinity modes (round-to-minus-infinity, RM, and round-to-plus-infinity, RP), which re-

quire the mantissa adder to produce three sum results: A+B, A+B+l, and A+B+2. To un-

derstand why this is necessary, consider adding the following two mantissas under the RP

mode (this example is abbreviated to 5 bits for clarity):

11000 0 operand A, whose exponent is twice as big as that for operand B

01000 1 operand B, which has been shifted right one bit for alignment

100000 1 right-mostbitsarethelsb(L)andtheguardbit(G);thestickybit(S)iszero

The intermediate result needs to be shifted right by one for normalization and then

rounded by one to satisfy the RP mode. However, rounding has been merged into the man-

tissa addition phase to reduce latency and to allow the use of only one 53-bit adder. This

means that to round properly, a one must be added to the bit position just above the lsb,

instead of at the lsb position (anticipating the subsequent normalization). In other words,

the adder must be able to produce A+B+2. Interestingly, this is not needed for the round-

to-nearest (RN) mode since in this case the rounding one is added to the lsb only when L=l,

Ill

G=l, S=0; consequently, adding a one at the lsb position will result in a propagation which

does not depend on whether a right shift occurs. This is the tie case for RN (i.e.. in decimal.

5.5 would be considered a tie, which for a similar binary example would be rounded up only

if the lsb is set); for the situation where L=l, G=l, S=l and a 1 bit normalization shift is

required, a rounding one added at the lsb will suffice due to propagation. The question aris-

es of how to generate the three different sums for RP without adding yet another carry tree.

To generate A+B+2, a row of half-adders is inserted into the pipeline prior to the generate/

sum stage of the adder, as shown in Figure 4.4. The A+B+l result can be created simply by

setting the lsb of the adder output to one, since this case will only be needed when the lsb

is zero.

An optimization that has been alluded to, is to round during mantissa addition in-

stead of during a separate step. The rounding logic determines which of the adder outputs

to select and is derived during both this stage and the subsequent S1P2 stage. Much of this

logic has been implemented by hand since it is on a critical paths for this phase. Several

signals are derived from 64-entry truth tables which were optimized using 6-input Kar-

nough maps. The mux-reduction technique described in Section 5.9 was used extensively

to factor out late arriving signals, such as the carry-out of the mantissa adder. A number of

bugs were identified during verification and led to modifications for the equations derived

in [Quach91a]; the final equations are summarized in Appendix B.

Figure 4.4 Generating A+B+2 for RM/RP Rounding Modes

112

During the next stage, S1P2. the size of a normalization shift is determined in par-

allel with the mantissa addition. While leading one prediction (LOP) requires additional

logic, it does not need to await the completion of the addition. As mentioned, during the

alignment phase the two exponents are compared, and the mantissas are swapped if re-

quired to ensure that the result will be positive. However, if the exponents are equal, the

result may still be negative and the LOP logic must be able to detect either a leading one

(positive) or a leading zero (negative) in the result. An alternative would be to perform a

magnitude comparison and swap the mantissas during the alignment stage. The first ap-

proach results in slightly more complicated LOP logic, while the second requires an addi-

tional alignment shifter since the magnitude comparison will be done concurrently with the

actual alignment; to minimize area considerations, the former approach was chosen.

The LOP logic was initially based on [Quach91b] and can be broken down into

three stages. First a vector Ubar is generated from the two inputs to the adder. The first oc-

currence of a zero in Ubar (from the most significant bit) indicates the position of the lead-

ing one/zero. The equations that define this vector represent all cases that have the ability

to generate a leading one/zero from the two inputs. In this discussion, the following con-

ventions are assumed:

Ai and Bi are the ith bits of the input operands A and B

Ti = X0R(Ai3i)

Zi = NOR(Ai,Bi)

Gi = AND(Ai,Bi)

The expression that was originally used is equation (4) from [Quach91b]:

v, = Ti_x + T._l({Ti_1®Ai_,)Zi+ (r,._2e/i,..,)G,.)

However, random verification found a number of cases not covered by this equation and a

new relationships for ut was derived as the OR of the following terms:

Ti+1ZiGi_l Gi+lCiTi_l Zi+iGiGi_1

1?

7",. ,C,C,_ jT _ , Ci,,TZi_l Z_,CT:_.

r.~iC.C--i C,-iZ,C,-i Z,.J,C,-x

~^P,-\ G.^G.Z,., z,.,^,.,

These 16 equations contain a certain degree of redundancy and can be reduced to an OR of

the following seven:

z.-^.ec,..,) c^a^^zfi^) 2»,^.,

^G^,-, 2.-+,7-f._,

z/+|(
G/®Gf-.)

These reductions make use of certain characteristics of T, Z, and G:

G, = r,+z,.

z,. = r, + G,.

rf«zi+c,.

In addition, the most-significant bit of Ubar is generated by the following relationship:

Ubar52 = 7"52Z51Z50 + G52G51Z50 + Z52G5]Z50 + Zj2r5,G50 + G52r51C50

The cell used to generate the Ubar vector consists of 20 gates and 9 inputs. This

large number of inputs results in the cell being wire limited and the effective height of the

cell (including spillover routing from the overcell region) exceeds all other datapath cells

by 15 microns. As a result, this cell sets the datapath pitch for one-half of the FPU, adding

an additional 6% to the overall area of the chip. Additional design effort devoted to this cell

should be able to resolve this problem.

114

Ubar is convened, through the use of a parallel CLA-like tree, into a second vector.

"SH", which contains a single one at the position of the leading one/zero. This conversion

is reflected in the following equation:

SHt = ANDiUbar^.j, £/iar(_,)

The parallel look-ahead reduction is shown in Figure 4.5 and the variables are defined as:

GlopO = AND(Ubar53,Ubar52,Ubar51)

Glopl7 = AND(Ubar2,Ubarl,UbarO)

GBlopO = AND(GlopO,Glopl)

GBlopl = AND(GlopO,Glopl,Glop2)

GloplO = AND(Glopl5,Glopl6)

Glopl 1 = AND(Glopl5,Glopl6,Glopl7)

GGlopO = AND(GBlopl,GBlop3)

GGlopl = AND(GBlopl,GBlop3,GBlop5)

GGlop2 = AND(GBlopl,GBlop3,GBlop5,GBlop7)

GGlop3 = AND(GBlopl,GBlop3,GBlop5,GBlop7,GBlop9)

This one-of-53 SH vector is reduced to the 6-bit encoded shift amount (Elop) that

controls the normalization shifter. The defining equations are:

GJJ |GTJ [GTJ

GBlopO GBlopl

GlopOGloplGlop2 Glop3Glop4Glopf

G14J |G13| |GT2

GBlop2 GBlop3

Ginf Gin

Gil GIC G9

Glop6Glop7Glop8

GBlop4 GBlop5

Gi/'

[G8] fÖTI [Ö6
GloplO

Glop9 Glopl 1
GBlop6 GBlop7

GGlopQJ

Girtk

G5 G4 G3
Glopl 3

Glopl2 fclopl4
GBlop8 GBlop9

GGlopl v

Gin"

GGlopZ^

G2] [GT| [GöI
Glopl6

Glopl5 X}lopl7
GBloplOGBlopll

I Gil

GG^P3!

Global Generate LOP

Figure 4.5 Generation of SH Vector for LOP

115

Elop(O)=

OR(SH{ 1,3,5,7,9,11,13,15,17,19,21.24,25,27.29.31.33,35.37.39,41.43.45.47.49.

51})

Elop(l) =

OR(SH{2,3,6,7,10,11,14,15,18,19,22,23,26,27,30,31,34,35,38.39,42,43,46,47,5

0,51})

Elop(2)=

OR(SH{4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31,36,37,38,39,44,45,46,47,5

2})

Elop(3)=

OR(SH{8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31,40,41,42,43,44,45,46,47

})
Elop(4)=

OR(SH{ 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,48,49,50,51,52})

Elop(5)=

OR(SH{32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52})

The Elop vector is used to predict the leading-one position for normalization, but it

will be accurate only to within one bit position. In other words, it may be necessary to per-

form a 1-bit fine adjustment shift using a multiplexor.

Several actions occur during the last stage, S2P1. First, if no alignment was neces-

sary, the output of the adder may be negative, since no magnitude comparison was per-

formed on the mantissas. Consequently, this intermediate mantissa result may need to be

complemented. At this point, any large normalization shift is performed using the value of

Elop generated from the leading-one prediction logic. This normalization shifter is similar

in organization to the alignment shifter, using a cascade of two 8-input multiplexors. The

final mantissa selection depends on several things, including whether the alignment or nor-

malization path was selected, the decision of the rounding logic, and whether an additional

1-bit normalization is needed. The last condition, derived by looking at the most-significant

bit of the normalization shifter, sets the effective logic depth along this path at 20 gates. The

term "effective" is used here because the actual gate depth is less than 20, but one of the

gates must drive a signal across a 53-bit column of the fine adjustment multiplexor. In all

116

other pans of the FPU, multiplexor select signals are derived during the phase previous to

when they are actually used. A buffered gate can drive the capacitance and fanout encoun-

tered for a 53-bit column in 300 to 400 ps, or approximately 3 to 4 gate delays. The critical

path just described could be reduced by adding logic in parallel to the mantissa adder in or-

der to determine whether a fine adjustment shift will be needed.

Also during this phase, the exponent (Ef) is adjusted to reflect the outcome of any

normalization. The various possibilities are summarized in Table 4.5. The actions indicated

in this table are implemented using an 11-bit exponent adder which has two carry chains

and can produce A+B and A+B+l. A number of the signals which generate the offset for

this adder and which determine the result that is selected arrive late in the phase. To miti-

gate the effect of late-arriving signals, this logic was hand-generated like the rounding log-

ic.

Finally, information about exceptions and the form of the result is generated during

this phase. Several bits encode whether the result is infinite, not-a-number (NaN), or zero.

These bits, used during the reorder buffer write phase, select either the computed result

from the add unit or one of the three constants. The same circuitry is used for the other func-

tional units. Generating these bits in the reorder buffer write phase works well because cir-

cuitry used in the final phase of most functional units has the critical logic depth, and it

cannot accommodate the additional selection logic.

Table 4.5 Generation of Final Exponent

Normalization Class Ef

Many Left Shift (MLS) Efi - Elop

Many Left Shift and Fine Adjust Efi - Elop - 1

One Left Shift (OLS) Ef 1 -1

No Shift (NXS) Efi

One Right Shift (ORS) Efl + 1

117

4.1.3 Comparison Instructions

The MIPS ISA specifies a broad range of comparisons for floating-point data via

three possible conditions: unordered (either operand is a NaN), equal (the result mantissa

is zero), and less than (the result is negative). The various predicates are encoded into the

lower 3 bits of the instruction and are implemented by subtracting one of the specified op-

erands from the other. Instead of producing a data result, they generate a single bit which

indicates the outcome of the comparison; this bit is written into the floating-point status reg-

ister via the reorder buffer. In addition, this bit of the status register is exported from the

FPU, along with a condition-valid signal, to be used by branch-on-FPU instructions.

4.1.4 Functional Verification

The add unit design was fed random floating-point numbers in each of the three

main operating regimes: alignment equal to zero, equal to one, and greater than one. The

same random operand pairs were also fed to a verification program running on the host

workstation and the results of both were compared. In this way the results of several hun-

dred thousand computations were verified, with a performance of 1.5 calculations per sec-

ond. At this point, a compiled-code version of the add unit was used to improve the

simulation time to 30 calculations per second and more than 10 million new calculations

were performed.

4.2 Conversion Unit

The MIPS ISA supports conversions between any of the 3 number formats (integer/

word, IEEE-754 single, and IEEE-754 double precision floating-point), which result in 6

possible operations:

cvt.d.s single to double

cvt.d.w word to double

cvts.d double to single

118

cvt.s.w word to single

cvt.w.s single to word

cvt.w.d double to word

A commonly encountered sequence of instructions involves changing the rounding

mode and then convening an operand to the integer format. Like the MIPS R4000, the Au-

rora IE FPU adds the following instructions, which encode the rounding mode directly into

the instruction to eliminate the need to change the control register before and after the con-

version:

ceil.w.s same as cvt.w but for the round-plus-infinity (RP) mode

ceil.w.d

floor.w.s same as cvt.w but for the round-to-minus-infinity (RM) mode
floor.w.d

round.w.s same as cvt.w but for the round-to-nearest (RN) mode

round.w.d

trunc.w.s same as cvt.w but for the round-to-zero (RZ) mode

trunc.w.d

Initially, we intended to implement conversions in the add unit to save logic. How-

ever, many of the paths in the optimized add unit are already at the limit of 20 gates per

phase, especially in the rounding logic. After further investigating the operations and logic

needed to support conversions, it became clear that merging the two sets of instructions into

the add unit would adversely impact the unit's speed. The final design for the conversion

unit includes a modest 30,000 transistors.

For the discussion which follows, refer to Figure 4.6 which shows the block dia-

gram of the conversion unit. The organization of the unit evolved from first identifying the

operations and exceptions associated with each of the conversion types. The following

summarizes these actions, describing first the steps involved in the conversion and then the

possible exceptions that may result:

cvt.d.s

1. Shift mantissa left from 24 bits to 53 bits. Since floating-point operands are normal-

119

doub^A douhirB
tmglcA un^ieB

CVT W DCVT SD\ cy /
CUD SC\T W S

(louNcA dt.« Nr A
iinplcA wool A singicA «orüA

MI I
VJ-LL7 V^1^ \ man LA/ \ maniB /

10« ü
8V6 15S

_L H

\ 7 CoraplO

I C«PAtil9 I

X
[ovCTflo^

CVT.S WCVT.D W
159 1055

Uli

3 L

a^

exp

I "■" 1
—i i—

.ra£ I I mi.

ICoropll

I expAdiO I
A+Bl[A+B+1

S1P1

\ align/

S1P1

S1P2

result

S1P2

genFPcltss

S1P1

genExcepüons

T 7
S1P1

Figure 4.6 Conversion Unit

ized to l.xx, this shift, performed using a multiplexor, will always be by a constant
number of bits.

2. Re-bias the exponent: ed = es + 896,0, where erf and es refer to the 8 bit and 11 bit expo-
nents for single and double precision. The subscript "10" for "896" means that this
number is of base 10; some numbers for the discussion that follows may be repre-
sented in hexadecimal, or base 16. The constant "896" results from subtracting the
bias for a single precision number ("127") from the bias for a double precision num-
ber ("1023").

Invalid: Operand is a signalling NaN and flag is enabled. A quiet NaN oper-
and will produce a quiet NaN result if this flag is not enabled.

Inexact: Cannot occur, since no rounding is needed.
Underflow: Cannot occur, since the range and precision of the double precision

format is larger than that for single precision numbers.

Unimplemented: 1. Operand is NaN and Invalid flag is disabled.

120

Overflow:

2. Source operand is a denormal.

3. Instruction attempts conversion from double to double, which is

not allowed.

Cannot occur, for same reason as Underflow.

cvt.d.w

1. Normalize mantissa by shifting right until the msb is a one. This will be done with

leading-one prediction logic and a left shifter.

2. If the two's-complement operand is negative, complement the normalized result in

order to obtain a sign-magnitude representation.

3. Generate A+l ('A' being the mantissa result from step 2) in order to complete the

two's-complement inversion of step 2.

4a. Select between A and A+l depending on the sign of the input operand,

b. Generate the result exponent: 3210- (shAmt+1) +102310 = -shAmt +105410

Invalid: Cannot occur, since there is no representation for a signalling NaN

in the word format (although a quiet NaN is possible).

Inexact: Cannot occur, since no rounding is needed.

Underflow: Cannot occur.

Unimplemented: 1. Operand is NaN and Invalid flag is disabled.

2. Instruction attempts conversion from word to word, which is not
allowed.

Overflow: Cannot occur.

cvt.s.d

1. Derive the guard, round, and sticky bits.

2. Add a rounding bit if necessary.

3a. Adjust exponent: es = -ed+S9610

b. Normalize mantissa by one and add one to exponent, if necessary.

Invalid: Operand is a signalling NaN and flag is enabled.

121

Inexact: 1. If guard, round or sticky bits are set. In other words, the result is

not the same as an infinitely precise result.

2. If an overflow has occurred.

Underflow: If enabled and tininess (result falls into the denormalized range) or

if disabled, tininess, and loss of accuracy (guard, round, or sticky

bits are set).

Unimplemented: 1. Source operand is a signalling NaN and Valid exception is not

enabled.

2. Source is denormalized.

3. Instruction attempts conversion from single to single, which is not

allowed.

4. Underflow has occurred.

Overflow: If overflow occurs. Care must be taken to examine the result after a

possible 1 bit normalization is performed.

cvt.s.w

1. Normalize mantissa, using leading-one logic and left shifter.

2a. If the operand is negative, complement the normalized result.

b. Generate guard, round, and sticky bits.

3. Produce A, A+l using 32 bit mantissa adder.

4a. Depending on sign of operand, rounding mode, and guard/round/sticky bits, select
between the results of step 3.

b. Generate the exponent: - (shAmt +1) +3210 + 12710 = -shAmt +15810.

5. Normalize mantissa by one and adjust exponent, if necessary.

Invalid: Cannot occur, since there is no signalling NaN for the word format.

Inexact: If guard, round, or sticky bits are set.

Underflow: Cannot occur, since the range and precision of the single format is

large enough to represent any 32 bit two's complement integer.

Unimplemented: 1. If a source operand is a signalling NaN and the Valid exception is

not enabled.

2. Instruction attempts to convert from single to single, which is not

allowed.

Overflow: Cannot occur.

cvt.w.d

la. Shift mantissa right by - ((- 1023]0 + ^) + n +32l0 = -fj+ 1054I0. If the amount of the

shift is less than zero, then an overflow has occurred. If the amount of the shift is

greater than 31, then the shift amount should be set to 31; this means that the oper-

and is less than 1.0.

b. Derive the guard, round, and sticky bits.

2. If the operand is negative, complement the result from step 1.

3. Generate A, A+l using a 32 bit adder. The incremented version will be used for add-

ing either a complementing or a rounding one. It is necessary to add one or the other

but not both, as will be discussed below. Select between the two results based on the

sign of the input operand, the rounding mode, and the guard/round/sticky bits.

Invalid: 1. Source operand is infinity.

2. Source operand is a signalling NaN and this exception is enabled.

3. An overflow has occurred.

Inexact: If any of the guard, round, or sticky bits are set.

Underflow: Cannot occur.

Unimplemented: 1. Source operand is a signalling NaN and the Valid exception is not

enabled.

2. The operand is denormalized.

3. Instruction attempts to convert from word to word, which is not

allowed.

4. Underflow has occurred.

Overflow: If an overflow has occurred.

cvt.w.s

la. Shift mantissa right by - ((-12710+es) +1) + 3210 = - ed+ 158I0. If the amount of the

shift is less than zero, then an overflow has occurred. If the amount of the shift is

greater than 31, then the shift amount should be set to 31; this means that the oper-

and is less than 1.0.

b. Derive the guard, round, and sticky bits.

123

2. If the operand is negative, complement the result from step 1.

3. Generate A, A+l using a 32-bit adder. The incremented version will be used for add-

ing either a complementation or a rounding one. It is necessary to add one or the

other but not both, as will be discussed below. Select between the two results based

on the sign of the input operand, the rounding mode, and the guard/round/sticky bits.

Invalid: 1. Source operand is infinity.

2. Source operand is a signalling NaN and this exception is enabled.

3. An overflow has occurred.

Inexact: If any of the guard, round, or sticky bits are set.

Underflow: Cannot occur.

Unimplemented: 1. Source operand is a signalling NaN and the Valid exception is not

enabled.

2. The operand is denormalized.

3. Instruction attempts to convert from word to word, which is not

allowed.

4. Underflow has occurred.

Overflow: If an overflow has occurred.

Several observations can be made about the organization of Figure 4.6. First, all

conversion types have a latency of only 2 cycles. Architectural simulations have shown that

conversions are used infrequently and have little impact on overall performance, so a short

latency may not be of tremendous importance. However, a uniform latency does simplify

various parts of the issue logic, including reserving a result bus. Second, rounding will nev-

er require adding both complementing and rounding ones to the mantissa. The reason is re-

lated to the nature of rounding. Rounding is necessary whenever there are too many bits of

precision in an intermediate result to fit into the width of a format. In other words, for a

normalized number, there are bits "hanging off the end." In order for a complementing one

to propagate from these extra bits up into the final section of the mantissa, these additional

bits must be all zero prior to the complementation. This means the guard, round, and sticky

bits are all zero and it is not necessary to round the result. Thus, only A and A+l need to be

124

generated but never A+2, simplifying the design of the mantissa adder. This observation is

also used to simplify the rounding logic in the add unit.

The preceding summary of conversion types shows that several instructions may re-

quire a 1-bit normalization shift after the mantissa adder. This normalization step, which is

implemented with a multiplexor, is on a critical path. Waiting for the adder result before

generating the select signals for the multiplexor causes unacceptable delay. The two rea-

sons for adding a one to the mantissa are, as just discussed, complementation (cf) and

rounding (cr). A Cc is used for both instructions that convert from an integer operand to a

single or double precision result. These conversions will never require a 1-bit normalization

shift, since there is no way for a one to propagate from the most significant bit of the adder.

In order to do so, the operand after complementation would need to be all ones; this corre-

sponds to an input operand of zero, which would not need to be complemented in the first

place. On the other hand, a cr can propagate out of the msb. Consider the following three

simplified cases:

ABC

100 110 111

+1 +1 +1

101 111 1000

The results of cases A and B do not need to be normalized, but that of C does. Be-

cause case C arises only when all bits of the input to the adder are set, this condition is easily

detected in parallel to the actual addition, reducing the logic along the critical normalization

path. The cvt.d.w instruction will never need this normalization since it can add a comple-

mentation one (cc), but not a rounding one (cr). The cvt.s.d and cvt.s.w instructions both

utilize a rounding cc and benefit from this approach.

Leading-one detection logic is somewhat simpler for the conversion unit than for

the add unit, since there is only one input operand. The top bit of the Ubar vector, Ubar3l,

125

is zero. For lower-order bits, the logic looks at 3 bits simultaneously (although the third bit

will be shown to be unnecessary) and creates a vector "Ubar", where the first bit set from

the left indicates the position of the leading one. The various possibilities are shown in

Table 4.6.

The defining equation is: (JÄ~TÄ~) + (Ä~i +1,)) = Ubar, which is simply an XOR

of i4(+I and Ar The Ubar vector, which may contain several logic-ones, is translated in a

vector, "SH", which has only one bit set at the position of the leading-one. This in turn is

translated into a 5 bit binary encoding which is used to control the normalization shifter. As

in the add unit, the SH vector is generated using a parallel look-ahead approach in order to

reduce the gate-depth of this logic and meet the target of 20 gates per phase. The equation

which defines SH is: SHi = AND{Ubarm], ~übä7~]). The final version of this design was ver-

ified using random operands with more than 10 million vectors.

4.3 Multiply Unit

Conventional approaches to multiplication involve a partial product array (3-2 or 4-

2 carry-save adders) followed by a carry-propagate mantissa adder. 4-2 carry-save adders

create a more area-efficient layout than 3-2 adders by providing both a regular placement

Table 4.6 Leading One Prediction for the Conversion Unit

3 bit window

^i+l^A'-l
Ubari comment

000 0

001 0
since this will give a shift of 1 too few

010 1

011 1

100 1
since a negative number will also need a

normalization shift

101 1

110 0
since this will give a shift of 1 too few

111 0

126

of cells and simpler routing. Booth recoding of the input operands can be used to reduce the

number of levels in the array by one, at the expense of adding recoding muxes. A compar-

ison of Booth and non-Booth approaches shows that the transistor count is lower for the

Booth recoded version, but the area is greater due to the fact that the routing is more com-

plicated (refer to Table 4.7). Increases in capacitance along critical paths of a Booth recod-

ed multiplier can offset the reduction in logic depth. This conclusions was reached by

creating a structural description for each design. However, instead of fully implementing

the designs, we used bounding boxes to represent the datapath leaf cells. This approach en-

abled a fast turn-around for placement, routing, and timing analysis. Only after evaluating

the different designs, did we design the cells for the iterative non-Booth multiplier that was

finally implemented. For comparison, the fastest CMOS double precision multiplier to date

generates a result in 8.8ns [Makino93].

The other alternative evaluated was the iterative use of a smaller array. This ap-

proach reduces the size of the multiplier considerably, although it requires 5 cycles to pro-

duce a result. Such a multiplier is blocking, in the sense that additional multiply instructions

must wait for the currently executing instruction to complete. A block diagram of this non-

pipelined implementation, which was used in the Aurora HI FPU, is shown in Figure 4.7.

As discussed earlier, the 2-cycle pipelined multiply unit results in a 10% improvement in

performance, but it is too costly in terms of area given the integration constraints for GaAs;

the faster unit would have accounted for almost a third of the overall chip area. Integer mul-

tiplication is also performed in the multiply unit. The final version of this design was veri-

fied using random operands with more than 10 million vectors. The design and analysis of

Table 4.7 Multiplier Implementations

Design
Area

(mm2)
Transistors

Transistors per
square mm

Delay
(ns)

(4-2) Non-
Booth

32.41 138,565 4,275 7.70 (2 cycles)

(4-2) Booth 39.75 118,432 2,979 7.67 (2 cycles)

(4-2) Iterative,
Non-Booth

24.19 94,501 3,907 20.0 (5 cycles)

127

cyclir»

X
53x16 Wallace-tree

°V hardwired lfr-hil nehi-shill
t

70-hn cam-save accumulator

[69:01

rounding/normalizing hardware

[6V.16]

[15:0]

cajrv/suckv eenerauon

Micky

:X5J
-i>-J

Figure 4.7 5 Cycle Iterative Partial-Array Multiply Unit
the multiplication unit was done by Mike Riepe and is described further in [Riepe93],

[Riepe94].

4.4 Divide Unit

As described in Section 3.8.1, non-restoring division algorithms can be combined

with the representation of intermediate results in a higher radix redundant form. SRT-2,

SRT-4, and SRT-8 approaches generate 1, 2, and 3 bits per cycle, respectively, and laten-

cies vary from 20 to 50+ cycles. Additional techniques can be employed to perform on-the-

fly conversion from redundant form to sign-magnitude form and on-the-fly rounding of the

result. A square root instruction can be fairly easily mapped to the same hardware used for

division, with little increase in area. The design and analysis of the divide unit was done by

Dave Putti and is described further in [Putti93]. The divide unit was not included in the cur-

rent implementation of the FPU due to area limitations; future improvements in process

technology should allow the divide unit to be added to the design.

4.5 Precise Exceptions

Being precise, with regard to exceptions, means that the machine state at the time

of the exception is the same as for a sequential CPU model; all instructions issue and com-

128

plete in order. A formal definition might be [IacoboviciSS]. [SrmthSS]:

1) All instructions prior to the interrupting one have completed.

2) All subsequent instructions are unexecuted and have not modified state. For more

ambitious architectures, this may result in a need to restore the program counter, sta-

tus registers, and RF operands.

3) If an instruction causes an exception, the program counter points to the address of

this instruction for use by the exception handler.

There are two classes of exceptions, the first relating to floating-point computation

and the second concerning memory faults; since they are constrained by different issues

they will be discussed separately.

4.5.1 Floating-point Computation Exceptions

There are two issues related to precise exceptions: how much should the IPU slip

ahead of the FPU and how much can be done in parallel within the FPU. The latter is han-

dled effectively by a reorder buffer. However, with the use of an instruction queue, the

former can be quite costly, since the IPU may have slipped far ahead of the FPU. To main-

tain precise exceptions, it would be necessary to back-up the state of the IPU to the instruc-

tion after the exceptional one, at the expense of much storage logic and a possible increase

in critical path lengths. The simplest approach for synchronizing the IPU and FPU is to

have floating-point operations always stall the integer pipeline. A better variant of this op-

tion involves exception prediction, where parts of the operands are compared to certain

constants to determine if an exception is possible. As an example, if the biased exponent

field of both single precision operands is less than 192, an overflow will not occur. A re-

quirement to be precise will always impact performance and a conservative prediction pol-

icy costs more in performance.

There are several implications in not supporting precise floating-point computation

exceptions: 1) a greater burden is placed upon the software, and 2) it is more difficult to

restart a program after an exception. The latter concern would be a problem for real-time

129

systems which must always be able to produce a correct result and cannot allow the termi-

nation of a program, such as the control system for an airplane. However, the environment

of a workstation is somewhat more tolerant and the primary concern here is that a program

will abort after running for many hours. Several techniques can be used to reduce the neg-

ative effects of imprecise exceptions while still taking advantage of the potential perfor-

mance gains seen by not being precise. First, the additional range that an extended-

precision mode offers might reduce exceptions for sections of code that are required to be

reliable. However, support for these less frequently utilized extended formats may both in-

crease and complicate the resources devoted to floating-point functionality. The approach

used in the Aurora HI FPU implements a separate precise mode of operation, where setting

a bit in the IPU and FPU control registers ensures that a precise execution model is fol-

lowed. After one or two instructions are transferred to the floating-point instruction queue,

the FPU asserts the queue-full condition, relaxing it only when each transferred instruction

has completed without generating an exception. The IPU will not proceed until the FPU has

determined that the instructions are exception-free. In addition to this method, check-point-

ing of some type might be used to periodically save the state of the processor, so as to allow

restarting. If an exception were encountered, the precise mode would be enabled and the

program would be restarted from the last checkpoint. A trap handler would then be called

when the exceptional instruction is reached, and a result would be returned by software rou-

tines.

The great majority of stable, well-tested applications do not experience floating-

point exceptions; for example, there are no computation exceptions found in the tens of mil-

lions of cycles for the SPECfp92 benchmarks. If a program shows a tendency toward en-

countering exceptions, the code may need to be rewritten to detect exceptions before they

occur. In a sense, implementing precise exceptions is not consistent with the RISC philos-

ophy of emphasizing speed and justifying hardware expenditure based on frequency of use.

For instance, page-faults are a common occurrence and require precise handling; floating-

point exceptions are quite rare and so one should not spend significant complexity or re-

sources implementing them. It is interesting to note that several commercial machines have

130

been unintentionally imprecise, including the IBM 360/91. Cray, and CDC 6600/7600, and

that a growing number of current machines offer a high performance mode which does not

support precise floating-point exceptions, including processors such as the RS/6000 from

IBM and the R8000/TFP from MIPS/SGI.

4.5.2 Memory Exceptions

Memory exceptions are a different class from floating-point computation excep-

tions, in that a computer must be precise with respect to page faults. Whereas floating-point

exceptions occur infrequently, memory exceptions are a part of the normal operation of a

program and must preserve the in-order sequence of instructions. In part, this means that

floating-point loads and stores must reserve an integer reorder buffer entry, as do integer

loads and stores. If a page fault occurs for a floating-point load or store, the exception field

in the integer reorder buffer entry for the corresponding instruction will be marked. When

this instruction reaches the head of the reorder buffer, an exception is signalled and pro-

cessed. All subsequent instructions are flushed from the reorder buffer. The state of the

FPU upon detection of a memory exception must be consistent with that of the IPU; in other

words, no instructions after the exceptional one can be allowed to change the state of the

FPU (write the register file or control register). In order to implement this, all load and store

instructions, regardless of whether they are integer or floating-point, must be sent to the

FPU. In addition, the tag corresponding to the integer reorder buffer entry must accompany

the instruction. When the integer load/store instruction reaches the head of the instruction

queue it will issue within the FPU and will be allocated a floating-point reorder buffer en-

try. When it is known that a load/store will not cause a page fault, both the integer reorder

buffer tag and a valid signal will be sent to the FPU. Using a small lookup memory, the

correct floating-point reorder buffer entry will be marked as valid. This approach requires

two exception-signalling pins between the IPU and FPU, one for when the IPU recognizes

a memory fault and one for when the FPU recognizes a floating-point numerical exception.

In addition to the exception signal, the IPU must send to the FPU the tag of the integer re-

order buffer entry that caused the exception, since this same instruction may not yet have

131

reached the head of the floating-point reorder buffer. To put this another way. the FPU may

not have completed executing all instructions that occurred prior to the exceptional one.

The FPU must finish these outstanding instructions before any additional instructions are

transferred. After catching up to the IPU, the FPU must perform the following:

1. all scoreboard valid bits are cleared since all instructions after the exceptional one

will be discarded,

2. all reorder buffer valid bits are cleared,

3. all result bus valid bits are be cleared, in order to ensure that a reorder buffer valid

bit is not subsequently and erroneously set,

4. all head and tail pointers are reset, including those for the reorder buffer, instruction,

load, and store queues.

The FPU ensures that no additional instructions are transferred by simply asserting

the queue full condition until the internal state of the FPU has caught up to the IPU. In the

meantime, the IPU is free to begin executing integer instructions from the memory fault

trap handler. As discussed earlier, all compare and store instructions must pass through the

floating-point reorder buffer prior to writing state, in order to ensure a precise model of ex-

ecution for memory faults. Finally, the IPU (and LSU) must continue to retire any valid

store queue entries since these will correspond to instructions that occurred prior to the ex-

ceptional one.

The MIPS ISA also requires that reads and writes of the floating-point status regis-

ter must stall until all issued instructions have completed and have written back to the reg-

ister file. The former constraint is necessary since there is no additional hardware to restore

the contents of the status register if an exception occurs and a subsequent instruction has

changed the register. Access of the status register is rare (2.2% of dynamic instructions, on

average across the SPECfp92 benchmarks) and does not justify the cost of additional re-

covery logic. Passing the data to be written to the status register through the reorder buffer

in order to maintain a precise execution model is difficult, since several fields in the status

register (rounding modes, exception enables) are fed directly to the various functional

132

units. Waiting for the status register data to reach the head of the reorder buffer before com-

mitting the write would mean that subsequent instructions might not be executed with the

correct modes. Bypassing these fields directly from each reorder buffer entry would be

costly. The constraint of stalling the issue of a status register instruction until all outstand-

ing instructions have written the register file is necessary since a result in the reorder buffer

may cause an exception, but will not be detected until it reaches the head of the reorder

buffer.

4.6 Implementing Floating-point Loads

The determination of whether load data is valid occurs some number of cycles after

a floating-point load instruction has been transferred to the FPU. Data for a load miss will

actually be sent twice to the FPU; the first time occurs prior to knowing whether a data

cache hit has occurred and the data is sent directly from the cache via the dcOut bus. Later,

when the miss data is either received from the BIU/MMU or is retrieved from the write

cache it will be sent to the FPU using the dein bus. These different events require a means

of applying the validation signal to the correct load queue entry. One approach would re-

quire the load-store unit to maintain information about which load queue entry an outstand-

ing load instruction has been allocated. This tag would need to be sent along with the

validation signal in order to ensure that the correct load queue entry is marked as valid. The

load-store unit can store the address of the tail entry of the load queue (a new floating-point

load instruction always allocates the tail entry of the load queue), since it is the IPU that

initiates pushes and pops to the load queue. In other words, the load-store unit can have a

duplicate, independent copy of the Lq tail pointer, and at any given time, the FPU and load-

store unit copies should be the same. For a load hit in the data cache, this load queue tag

will stay in the load-store unit pipeline until the tag comparison has been made, at which

time the tag will be sent to the FPU along with the validation signal. For a load miss, the

load queue tag will be written to the miss-status-holding register (mshr) that corresponds to

the floating-point load instruction. When the load data is returned from the BIU/MMU, this

tag will be read from the mshr and sent with the data and validation signal to the FPU.

133

A preferred option for guiding load data and validation signals to the correct load

queue entry will be presented here. Similar to the approach for precise memory exceptions

described in Section 4.5.2, when a floating-point load instruction is transferred to the FPU.

the corresponding integer reorder buffer tag is also sent. The entry number in the load queue

for the floating-point load being issued is written into another small tag memory (LqTag-

Mem). When data from a load miss arrives from the BIU, or when data previously written

to the FPU is known to have hit in the data cache, the integer reorder buffer tag for this

memory reference is resent to the FPU along with data and validation signal. The tag mem-

ory is read to obtain the correct entry number in the load queue. This tag memory must have

as many entries as there are integer reorder buffer entries. This approach was selected for

the Aurora III design because it requires minimal additions to the existing load-store unit

functionality.

In a number of cases, the IPU needs to send an integer reorder buffer tag to the FPU.

These are when:

a) writing LqTagMem when a floating-point load instruction is transferred to the FPU,

b) writing the load queue with data from the data cache (occurs 2 cycles after the

instruction was transferred),

c) writing a load queue valid bit for a data cache hit (happens in the second cycle after

the tag was returned),

d) writing the load queue with data and the valid bit for a write cache hit or a load miss

that has been returned via the BIU.

These lead to the following constraints:

1. a and d cannot happen simultaneously, since load data sent to the FPU via dein is

prioritized higher than the transfer of floating-point instructions.

2. (a or d), b, and c can occur simultaneously, which calls for a small integer reorder

buffer tag pipeline in the FPU, to track the progress of load data through the data

cache; this approach requires only one external tag bus between the IPU and FPU.

134

3. a requires write access to LqTagMem.

4. b, c, d all need simultaneous read access to LqTagMem. This will require 3 read ports

for LqTagMem.

5. b and either a (for move-to-FPU instructions) or d need simultaneous wnte access

for load queue data. Consequently, the load queue will need to have 2 write ports.

6. c and either a (for move-to-FPU instructions) or d need simultaneous write access for

load queue valid bits. Two valid-bit write ports will be needed for the load queue.

4.7 Implementing Floating-point Stores

Store data will be written into the store queue in the same order it occurs in the pro-

gram; in other words, there is no need to reorder the stores as they are extracted from the

store queue by the load-store unit. In addition to the result data, the store queue will also

contain a store-type designator and integer reorder buffer tag field (both of which will need

to be dedicated pins). There are two distinct classes of store instructions, those that send

data to memory (swcl/sdcl) and those that transfer data to the integer register file (mfcl/

cfcl). Only the swcl/sdcl instructions will write data to the write cache. An alternative to

sending the store type and destination field from the FPU to the IPU would be to have a

small queue in the load-store unit. This queue would be written when the floating-point

store instruction is transferred to the FPU. However, this queue would need to have as many

entries as the possible number of outstanding floating-point stores (the number in the in-

struction queue plus the number in the store queue plus one for the store unit pipe stage).

The designer is faced with a choice between a few additional pins addition of a fairly large

memory structure. To minimize chip area, because of the limited integration levels of

GaAs, I chose the former approach for the Aurora HI FPU.

The main complexity in implementing floating-point store instructions concerns the

fact that the data is not ready when the write cache entry is allocated (or overwritten for a

store write cache hit). For an integer store, the procedure is to allocate a new write cache

entry if the store misses in the write cache. The address and data are written at this point

135

while the rest of the line is written when the data is available from the data cache or sec-

ondary memory. Since the floating-point data is not ready at the time the write cache entry

is allocated, either the data or the rest of the line may appear first. In addition, more than

one floating-point store may hit in the same write cache entry (and word within that entry).

It is important to not mark the entire line as valid if one or more floating-point stores are

still outstanding. The load-store unit also needs to know to which write cache entry the

floating-point store data to be written. In the discussion that follows, it is assumed that each

write cache entry has separate valid bits for each word of the line, and there are 8 words per

entry. An "fpbusy" valid bit is also needed for each word. The sequence for handling float-

ing-point stores is as follows:

1. The store instruction and address are forwarded from the ALU stage of the IPU to the

first stage of the load-store unit. If the address hits in the write cache but the fpbusy

flag is set for this word, the instruction is set aside (this will be described below in

more detail). Otherwise, the floating-point store instruction is transferred to the FPU.

2a. On a write cache miss, a write cache entry is allocated and the address is written to

the entry. A lazy writeback policy ensures that there is a free entry; an instruction

will not be forwarded to the load-store unit if all write cache entries have words out-

standing. The word valid bit is cleared (unless this is an integer store, in which case

the word valid would be set) and the fpbusy bit is set.

b. On a write cache hit, the fpbusy bit is set and the word valid bit is cleared. If the

fpbusy bit was set, another floating-point store to the same word in this line is out-

standing.

3a. For a write cache miss, the line will either be in the data cache or will need to be

fetched via the BIU/MMU. In either case, when the line is returned each word valid

bit is set, unless the fpbusy bit is set. The data for a word of the entry should not be

written if the valid bit is already set (this happens if a previous instruction was an

integer store, or if the FPU has returned the outstanding floating-point store data

prior to the line arriving).

136

b. At some point, either before or after 3a. the store queue will be loaded with the

required word. A separate dedicated tag bus from the FPU to the IPU will contain

the integer reorder buffer tag for the floating-point store at the head of the store queue

(this tag was sent initially along with the instruction to the FPU). This tag from the

FPU will then be used to retrieve the address from the integer reorder buffer entry,

which in turn will be sent to the data cache. At the same time, the data will be sent

to the data cache from the FPU via dein, and will also be sent to the IPU via dcOut

so it can be written into the write cache. If there are no other outstanding stores to

the same word of this line (the determination of this will be discussed below), the

fpbusy flag is cleared and the word valid flag is set. Only if all word valid flags are

set can this write cache entry be written back to the data cache and the secondary

memory system. Note that it is possible for the write cache to fill up without being

able to write back an entry; this would occur when all entries have outstanding float-

ing-point stores. When the write cache is full, the load-store unit must not accept any

more store instructions until an entry becomes free.

A potential problem arises when a given entry in the write cache has more than one

outstanding floating-point store to the same word. The processor must be able to determine

whether an entry in the store queue is the last one to reference that word in the write cache

A solution to the problem might involve assigning an "fpbusy" tag to each outstanding

store; this tag is similar in nature to those used in the reorder buffer to write-back data to

the register file. In the reorder buffer write-back case, there can be multiple entries in the

reorder buffer, all of which write the same register; the scoreboard must not be cleared until

the most recent register reference reaches the head of the reorder buffer. This is accom-

plished by storing the reorder buffer tag for the most recent instruction in the scoreboard

entry for the destination register. When an entry reaches the head of the reorder buffer, the

scoreboard is cleared only if the number of that entry matches the scoreboard tag for the

destination register. A similar approach could be applied to the floating-point store prob-

lem, which is in reality a reordering problem. The size of the tag would need to accommo-

date the maximum number of stores that can be outstanding at a time. When the write cache

137

entry is allocated, or a word in an entry is overwritten during a write cache hit. this tag

would be written to a field in the entry for that word. When the data was returned from the

store queue, the fpbusy tag in the entry would be compared to the fpbusy tag sent along with

the data from the FPU. If the two were the same, the fpbusy valid bit for that word of the

write cache entry would be cleared and the word valid bit would be set.

As an alternative, the fpbusy tag could be replaced with an fpbusy count field for

each word in a write cache entry. This count field would be incremented or decremented

each time an outstanding floating-point store for this word is issued or retired, respectively.

The count field needs to be large enough to accommodate the maximum number of possible

outstanding floating-point stores. However, if the count field uses a Johnson encoding, the

incrementing/decrementing could be done without an adder, at the expense of needing

more bits of storage for each count field. The fpbusy valid bit would be cleared and the

word valid bit set only if the fpbusy count is zero for a store retired from the store queue.

Both of these approaches add significant complexity and resources for a condition

which will seldom be encountered. A final option would also involve setting an fpbusy bit

whenever a floating-point store allocates a write-cache entry or writes to an existing entry.

However, if another store to the same word arrives at the load-store unit while the first one

is still outstanding, the corresponding instruction and address would be placed into a single

entry holding register. It is necessary to set aside the instruction in this way, since upon

completion of the first floating-point store, the address of this first instruction must be re-

sent to the load-store unit from the integer reorder buffer as the data is sent to the IPU via

the dcOut bus. This action needs access to the first pipe stage of the load-store unit in order

to rederive the address of the write cache entry. In addition to setting aside the second store

instruction, the load-store unit will signal the ALU stage to not forward any additional in-

structions until the second store has been activated, after the first store has completed and

written the write cache entry. This approach is preferable to the first two for a number of

reasons. First, there is no longer a need for additional state in the form of an fpbusy tag or

count fields for each word of a write-cache entry. Second, the case of having two or more

outstanding stores write the same word should occur infrequently, therefor a solution

[38

should not require a significant increase in either complexity or chip area. A load instruc-

tion which hits a word in the write cache while a floating-point store is outstanding to this

word must also follow this set-aside procedure. Such a load cannot progress further since

the data it needs is not yet available. The mechanism of setting aside load and store instruc-

tions which reference the same word of a write-cache entry ensures that memory references

function reliably in the Aurora El processor.

4.8 Predecoding Floating-point Instructions

Critical paths in the FPU design are well balanced and no section of the design ex-

ceeds the goal of 20 gates per clock phase. The issue logic, in particular, is fairly complex,

having its operation constrained by: data dependencies via the scoreboard and reorder buff-

er, invalid load queue entries, busy multiply and divide units, unavailable result busses, an

empty instruction queue, a full reorder buffer, a full store queue, and status register access-

es. After issue has been resolved, a host of other actions may need to be performed, includ-

ing: setting the scoreboard valid and tag fields, reserving a result bus entry, initiating a

multiply or divide operation, reserving a reorder buffer entry, selecting the source for op-

erands, and advancing to the next instruction queue entry. The combination of decoding

and evaluating the two instructions at the head of the queue could easily exceed the target

gate path depth. Since several pipe stages are required for floating-point instructions to

reach the queue, there is ample opportunity to derive a set of predecoded signals which can

simplify the logic needed by the issue clock phase. If the predecode logic were placed in

the IPU, additional pins would be required to transfer the instructions. Instead, instructions

are predecoded in the phase immediately before they are written into the queue. This time

slot occurs naturally in the Aurora HI design; if the predecoding were performed earlier,

this phase would be wasted. The use of predecoding does require an additional 15 bits per

entry in the instruction queue. The predecoded signals can be summarized as follows:

1. Iclass: a 3-bit tag that indicates which functional unit will be utilized by this instruc-

tion.

2. Idepclass: a 2-bit tag that refers to how many source operands are used by the instruc-

139

tion (0, 1, or 2).

3. Iresclass: a 1-bit tag that indicates whether the instruction produces a result that will

need to pass through the reorder buffer.

4. FUspec: a 3-bit tag, written to a result bus shift register, identifies which functional

unit will write the reorder buffer upon completion of the instruction.

5. FUvector: a 5-bit valid vector, written to a result bus shift register, aligns data prop-

erly to be written into the reorder buffer.

6. IclassExcept: a 1-bit signal that identifies certain types of exceptions, such as an

invalid opcode or an operand format that is illegal for a given instruction.

The predecode logic is duplicated in order to handle the 2 floating-point instructions

that can be transferred to the FPU per cycle. Table 4.8 summarizes characteristics of this

logic and shows that removes as many as 12 gate levels from the issue phase.

4.9 Design-For-Test Features

Design-for-test is often added near the end of a design, and designers are usually

concerned about how much area and design time will be needed. Full scan is impractical

for an integration-poor technology like GaAs DCFL. Every design-for-test feature added

must be thoroughly tested, both to ensure it will do what is intended and to ensure that it

Table 4.8 Predecode Logic Statistics

Signal
Synthesized
Logic Depth

Iclass 10

Idepclass 8

Iresclass 10

FUspec 10

FUvector 12

IclassExcept 12

140

does not introduce errors into a stable design. With these constraints in mind. I included the

following features in the FPU:

1. Two scan chains for the register file. The register file is sense-amplifier based; the

yield associated with this analog design and dense memory structures in GaAs is a

concern. The two scan chains provide accessibility to the register file, one for the 5

address ports (1 write, 4 read) and one for the input and output data. In addition, spe-

cial write enable and clock signals have been added to allow the normal write logic

to be bypassed when the FPU is being tested.

2. A scan chain for the 23 main issue-logic signals. The observability gained with this

scan chain should one to identify a problem in some component of the FPU that pre-

vents issue from occurring. These signals are not controllable, since they originate

from parts of the design that are difficult to access without adding design complexity,

such as the valid bits for the reorder buffer and scoreboard.

3. A scan chain for one of the two result busses, allowing the result of any functional

unit to be verified prior to writing the reorder buffer and the register file.

4. A scan chain for the top 2 entries in the instruction queue, including all predecode

signals.

5. A test signal, testStallFPU, which ensures that the issue of instructions will stall until

the instruction and load data queues have been loaded. In conjunction with some of

the other test features, this allows any instruction and operands to be loaded, exe-

cuted, and verified.

6. External access to clock and reset signals on the distribution network. This provides

easy verification of basic functionality during initial testing.

Together, these additions increase the chip area less than 1% while providing great-

ly improved access to internal points in the design.

141

4.10 Hardware Support for Denormals

A denormalized number occurs when a result exponent is too small to be represent-

ed by a given floating-point format. The IEEE 754 specification requires that the returned

denormal be the infinitely precise result multiplied by a large constant and then appropri-

ately rounded. These steps can be accomplished without impacting cycle time or overall

chip area by using a state machine to perform the necessary mantissa shift and exponent

adjustment. However, the additional design and verification complexity was not seen as

consistent with the goals of an academic project. In addition, denormals occur rarely and

can be handled in software. In fact, the most common occasion for denormals arises during

iteration convergence when a result value is less than some tolerance threshold; this is often

produced by a subtraction and a subsequent comparison to zero. The fact that a denormal

might result is not particularly significant since for all purposes the difference is really com-

parable to zero. The MIPS R4000 ISA addresses this case by implementing a flush-to-zero

mode in which denormalized results are set to zero. The Aurora in FPU follows this ap-

proach and will trap to a software handler if the mode is not set.

CHAPTER 5

CAD Support for High
Performance Designs

5.1 General Observations on CAD for VLSI

During the design of a chip, there often arises a need to solve a specific problem by

creating a custom CAD tool. For example, a utility might be needed to determine the fanout

for each gate in a design and alert the designer to any instances which exceed a certain

threshold. There are a number of trade-offs to consider when implementing these tools, in-

cluding what programming environment to use, how often the tool will be used, what size

of a design the tool will be used for, and how long it will take to create and verify the tool.

In many cases, the tool will do nothing more than read an ASCII file, such as a

netlist, and perform some transformation; for this type of problem a script language such

as "awk" or "peri" will suffice. For example, it might be necessary to add an attribute to

critical nets in order to ensure that the corresponding interconnect wires have a certain

width, and hence no more than a certain value of resistance. Scripting languages, which of-

fer support for manipulating text files, are easy to use, allowing for a fast design cycle.

There is a trade-off between how many times the utility will be run and how fast it

needs to operate. A delay-calculator will be run many times throughout the design cycle,

whereas a tool to derive the power dissipation of a chip may only be used several times. In

the latter case, a scripting language might be acceptable, even if it results in a runtime on

the order of several hours. However, for applications that require a fast runtime, a low-level

programming environment, such as C or C++, will allow the programmer to better tune the

utility for performance.

142

143

Care must be taken in how an algorithm is implemented and there are a number of

issues to consider. The use of recursion often provides the most efficient implementation.

but can make verification somewhat more difficult. It is important to keep in mind the size

and complexity of the designs that the utility will address. This will often determine wheth-

er to use a linked-list or a hash table. Hash tables tend to require more effort on the part of

the programmer but are often invaluable in managing the data structures for a large design.

Linked-lists are easier to implement but should be used only in cases where their length will

allow efficient traversal. Often a combination of hash tables and linked-lists offers the best

solution. Dynamic allocation of memory for data structures is another important CAD is-

sue. Because of the cost associated with calling allocation routines, it is important to ex-

clude the use of these routines from sections of code which are executed frequently. Data

structures should be created only once and subsequently accessed with pointers.

The nature of a CAD algorithm itself may limit performance. The levelizer de-

scribed below has several modes of operation, one of which can lead to runtimes of several

days for designs having large amounts of connectivity. The issue here is not that the algo-

rithm has been implemented poorly, but instead, that in order to achieve a reasonable runt-

ime, a feature of the utility may need to be disabled. In many cases, the most important issue

concerns how long it takes to develop the tool. The tool will address a specific issue and in

so doing will facilitate a stage of the design process; often it is difficult to proceed with a

design until the tool has been completed. Careful work in the early implementation stages

can minimize the iterations required to improve the performance of the tool.

5.2 Delay Calculation

Delay calculation for the Aurora HI methodology uses 2D interpolation tables based

on work by [Kayssi93a]. The tables are generated by running HSPICE for each primitive

cell with various combinations of interconnect capacitance and fanout. Since the building

blocks in GaAs DCFL are fairly limited, primitive cells consist only of an inverter, NOR

gates of fanin between 2 and 4, and super-buffer cells which have a fanin between 1 and 8.

Information about both the delay and rise/fall time (slew) for a gate are calculated. For the

144

plain DCFL gates the axes of the lookup table are:

f CTo,.:! } (Wdr„,r r \
 I, = tanoul !

\ driver; \ driver. J

Clolal is the sum of the interconnect capacitance and an empirically derived value for

gate capacitance. This latter relation involves the width of the driver, the width of all driven

gates, and whether the transition is rising or falling; this rise/fall information is necessary

because current flows into the gate of a MESFET transistor, and gate capacitance varies

with gate current. For super-buffers, the axes are simply the total capacitance and the input

slew rate.

Traversal of a design uses a recursive routine provided by Cascade Design Automa-

tion. The algorithm begins at all primary outputs and works backward to each primary input

using the following approach:

for (i=0; i<num_outputs; i++) calc_delays(inst[i]);

calc_delays (inst) {

for (j=0; j<num_inputs(inst);j++) {

if (inst.inputfj].slew = -1 && inst.input[j].net != primary_input)

calc_delays (inst.input[j].driver);

delay = interpolate(inst.input|j]);

if (delay > instdelay) inst.delay = delay;

}

}

When the data structure for the circuit is created, the various values for each in-

stance are initialized. For example, the worst case delay through a gate will be the input-

output pair with the maximum delay; initially the delay for the gate is set to zero. Similarly,

the slew for each gate is initialized to minus-one. Referring to Figure 5.1, this simple ex-

ample would be traversed as follows:

145

Figure 5.1 Recursive Network Traversal

1. visit X4.I0

2. visit X3.I0

3.visitX2.I0

4. visit X1.I0, calculate delay, slew

5. return to X2.I0, calculate delay, slew

6. visit XO.IO, calculate delay, slew

7. visit X0.I1, calculate delay, slew

8. return to X2.I1, calculate delay, slew

9. return to X3.I0, calculate delay, slew

10. return to X4.I0, calculate delay, slew

11. visit X4.I1, calculate delay, slew

Each instance may be visited more than once, but by utilizing the point at which a

delay is actually calculated, each input on a gate will be visited only once. This engine for

traversing a design is the core for several of the utilities which follow.

In order to verify the accuracy of the delay calculator, several utilities were created

to automatically generate a ready-to-run sensitized HSPICE netlist from a path selected

within the Cascade timing analyzer (Tactic). First, a program based on the traversal engine

of the delay calculator is run to generate an ASCII database for a design. This database con-

146

tains information about each instance, such as the interconnect capacitance at the output.

the width of the transistors that comprise the gates, and the net names for all inputs and out-

puts of each instance. A second program reads this database and creates an appropriate data

structure for the design. At this point, paths that appear in Tactic can be processed extreme-

ly rapidly and an HSPICE netlist for each path is created. A script is then used to run

HSPICE and compare the simulated results to those produced by the delay calculator. For

the Aurora II design, several hundred paths of various lengths (from a few gates to greater

than 30 gates) were evaluated. In all cases the error was found to be less than 109c and in

the majority of cases (>70%) the error was less than 7%. The difference came primarily

from two sources. First, there is an inherent error in both the mathematical fit involved in

generating the interpolation tables and the interpolations. Second, the approach to delay

calculation just described does not consider the effect of more than one input being high for

a multiple input NOR gate. This situation results in an output node being discharged slight-

ly faster than for the case where only a single input is driven by a logic one. Neither of these

error sources is very significant since the overall accuracy is within 10%.

Delays derived by these routines are used in two ways. First, a version of the delay-

calculator is directly linked into the static timing analysis environment. Information about

large delays, capacitances, and fanout can be dynamically reported to the user. Dracula-

modelled capacitances can be incorporated into the calculation routines, as will be dis-

cussed below. Second, the delay-calculator can run in a stand-alone mode and the results

can either be back-annotated to any digital simulation environment (Verflog, VHDL, Men-

tor Graphics) or used to drive a buffer sizing/selection utility.

5.3 Capacitance Extraction

The extraction of parasitics is an important part of any methodology for performing

timing analysis. Parasitics may need to be extracted on both the local cell level and the

higher global level. For the former, source code for a local cell extractor was obtained from

Cascade Design Automation and was modified to support the additional interconnect layers

available in the Vitesse GaAs process. The results from the local extractor were verified

147

using DRACULA and the error was less than a few percent. Global interconnect extraction.

however, proved to be more difficult. In order to support a fast iteration for timing analysis.

the present Cascade tools do not precisely extract global interconnect. Instead, a single em-

pirical capacitance value (in femto-farads per micron) is derived for each interconnect layer

and the overall capacitance for a net is found by simply multiplying this layer constant by

the net length that is routed in that layer. This approach can, in the worst case, lead to sig-

nificant errors in capacitance. Consider a case where two wires run from adjacent sources

to adjacent destinations. One wire follows an overcell track across a datapath and encoun-

ters a large amount of interlayer capacitance, whereas the other wire is routed in a channel

and sees only the capacitance to the substrate and ground plane. In most process technolo-

gies, interlayer capacitance for long wires, especially for adjacent layers, is more signifi-

cant than the capacitance down to the substrate or up to the ground plane. The calculated

value will be the same for both wires, when in fact one wire may have a capacitance up to

100% larger than the other. The results of delay calculation and subsequent decisions about

critical paths, buffering, and wire sizing can all be affected by inaccurate capacitances.

Global extraction is further complicated by how the empirical value for each layer

is derived. Some heuristic percentage is applied to the plate and fringing capacitance of

each layer, and the sum of these derated values across all layers defines the single empirical

value for that layer. However, the nature of these heuristics are included in the router and

are not visible to the user. As a result, the layer capacitance values in the process file must

be adjusted until the calculated capacitances are in the best agreement with Dracula gener-

ated ones. This was done by using two representative test cases, one comprised of standard

cells and the other of datapath cells. A script was written which reads the Cascade database

and adjusts the various layer capacitance parameters until the best match with Dracula is

found. Table 5.1 contrasts the original process file values (obtained from Cascade) with

those derived from this approach. Using the improved layer values results in an average er-

ror of about 30% and a maximum error of about 90%. These errors are due to the inherent

inaccuracy in the approach for global extraction, but are acceptable for first-pass timing

analysis.

148

Table 5.1 Global Capacitance Tuning

Test Case
Avg Difference

with Dracula
(£)

Largest
Difference with

Dracula
(9f)

Largest
Capacitance

(fF)

Standard Cells
(original)

303.9 688.7 0.185

Standard Cells
(improved)

38.5 93.8 0.302

Datapath Cells
(original)

350.3 701.5 0.163

Datapath Cells
(improved)

27.7 85.7 0.275

To further improve global extraction, several utilities were written which allow

Dracula-generated capacitance values to be incorporated into the Cascade timing method-

ology. The main focus of these utilities is syntactically matching the capacitances in a Drac-

ula extracted SPICE netlist with the corresponding nets in the Cascade database. Hash

tables and linked-lists are used extensively to provide an efficient runtime. Used during the

latter phase of the Aurora II design, these utilities were in part responsible for the close

agreement (within 10%) between predicted clock frequency and that measured in testing.

The use of Dracula capacitances should be reserved until the very last stage of timing anal-

ysis, since generating these capacitances requires a successful layout-versus-schematic

(LVS) check. Typically, cell development and validation proceed in parallel with the other

aspects of the design and are not completed until late in the design process.

5.4 Clock Phase Hazards

A two-phase level-sensitive non-overlapping clocking scheme was originally cho-

sen for conservative reasons, since if circuits are properly designed this approach ensures

functionality at some clock frequency. Some design errors can be worked around by adjust-

ing the frequency and placement of clock edges on a tester in order to verify the function-

ality of a chip. On the other hand, a flip-flop based design requires much better analysis. A

decade ago it was reasonable to assume that gate delay was much larger than interconnect

149

delay and the control of clock skew did not greatly impact the functionality of a design.

Current process technologies support gate switching speeds of 100 to 200 ps and the com-

ponent of overall path delay due to interconnect has increased greatly; for GaAs. average

loaded gate delays of 100 to 150 ps mean that RC delay comprises 407c to 60% of the over-

all path delay. Consequently, much better analysis of clock skew is necessary to ensure

proper functionality (clearly, skew also has an impact on performance). To illustrate this,

consider Figure 5.2 which shows that if the clock is delayed to the second flip-flop due to

a longer interconnect path, this flip-flop may incorrectly latch the data that has propagated

through the first flip-flop.

The use of two phase clocking introduces a potential design hazard which can limit

the frequency at which a chip will operate. Figure 5.3 shows a simple representative exam-

ple, where signals latched in a previous phase are to be used to generate signals that are

latched in the subsequent phase. This logic inadvertently uses inputs from both clock phas-

es, resulting in a reduced active time for the Phi2 phase; it is constrained to be equal to the

propagation delay through this logic block. An easily-implemented two-phase non-over-

lapping clock generator has an active period for each phase that is equal to 1/4 of the clock

period; the 2 non-overlap regions account for the other 1/2 of the period. For a 4 ns clock

(250 MHz), the active period would be 1 ns. However, the delay along a critical path may

be almost twice this amount; the hazard means that the active time for the Phi2 clock will

need to be long enough to accommodate this delay. Several of these errors were discovered

in the Aurora II design when it was fabricated. More rigorous nomenclature might facilitate

recognizing these cases, but many times the logic is complex and is derived from numerous

Figure 5.2 Clock Skew for A Flip-Flop Based Design

150

Figure 5.3 Clock Hazard for 2 Phase Design

intermediate signals. To ensure completeness, an automated check must be performed; to

do the verification, a utility based on the delay-calculator traversal engine was written. Us-

ing the recursive algorithm described in Section 5.2, the utility visits every bit of every

latch in the design only once. Whenever a latch is encountered, a second recursive routine

is used to travel forward through the design in order to reach all gates driven by the latch.

If a path terminates at another latch, information about this latch is added to a hash table.

After traversing the entire design, the tool examines the hash table to identify any occur-

rences of two successive latches being driven by the same clock phase. For reasons which

are discussed in Section 5.7, the runtime for this utility can be quite long. For example, the

tool verified the FPU design in 12 hours, identifying 20 hazards. This utility is run only a

few times near the end of the design cycle, and so a longer runtime is acceptable.

5.5 Clock Distribution Analysis

Level sensitive latches and phase borrowing (as discussed in Section 5.7) are some-

what more tolerant of clock skew, however accurate analysis of the clock distribution net-

work is still critical for a high clock rate processor. An initial starting point for the

distribution network was based on insight gained during completion of the Aurora II de-

sign. In the Aurora II CPU, both clock phases enter the chip from the same side and, al-

though close in proximity, are separated by several ground pads. It became evident while

testing the initial design that cross-talk can be significant if the clocks are assigned to adja-

cent pad locations. Both phases are routed to a central location on the chip where on-chip

151

clocks are generated and driven into a five-level distribution network. The non-overlapping

clock phases distributed internally are generated from the external clocks, which are 90 de-

grees out of phase, using the following relationships:

Phil = clk\+clk2

Phil = clkl+clkl

In addition, the sense amplifier-based register file requires a third phase, which is

formed from an XOR of the two external clocks. The overall goal is to constrain latch-to-

latch skew to be no more than 600 to 700 ps; an empirical rule limits fanout along each

branch of the network to no more than 9. Each standard cell is assumed to provide a load

of 2 minimum-sized enhancement transistors (15 microns of width), while datapath in-

stances terminate in a column driver (50 microns of width). Very large buffers are used

along the first levels of the distribution network. The last stage of the network ends at a lo-

cal driver cell, which for datapath cells is physically located in the first row of a column. In

order to keep polarity uniform throughout the chip, we added drivers to each standard-cell

latch as well. A final post-processing step in the design methodology reduces the number

of drivers by merging multiple latches so that they share a common driver.

Several utilities were written to help analyze the clock distribution network. The

primary one, based on the delay-calculator traversal routine, generates a ready-to-run

HSPICE netlist for each clock phase of the network. It first builds a data structure to repre-

sent the circuit, and then recursively moves outward from the top-level clock inputs. Each

gate encountered along the way is added to a hash table; this proceeds until all latches that

terminate the distribution network have been visited. A final routine reconstructs just the

distribution network and creates a sensitized HSPICE netlist which contains capacitances,

specific gate types, and fanout. As with other delay calculator-based utilities, Dracula gen-

erated capacitances can be incorporated into the output netlist. After HSPICE is run for

both clock phases, several analysis scripts are used to provide different ways of analyzing

the data. First, the transit time delays for both phases are sorted and plotted, as shown in

Figure 5.4 for the FPU. A rough sense of skew in the design can be obtained by comparing

152

1.4
Phil

■

1.2
 ,

1.0 -

(ns) J ■

0.8 /
■

0.6 . Rising __^-' /—

■ 0.4 '—* Falling

0.2 - -

'

0 100 200 300 400 500 0 200 400 600
Sorted Ordering of Delays Sorted Ordering of Delays

Figure 5.4 Sorted Clock Transit Times (No Resistances)
the range of values for these 2 graphs; a possible maximum value would 0.72 ns (1.1 ns of

the Phil graph minus 0.38 ns of the Phi2 graph). This does not necessarily mean that 2 suc-

cessive latches experience a skew of this magnitude. In order to obtain a more accurate re-

port of latch-to-latch skew, a utility similar to the clock phase checking program was

created. This program creates an ASCII database of all successive latch pairings; it is used

in conjunction with the output from HSPICE to obtain a list of those latch pairs for which

the skew exceeds a user-specified threshold. A final utility can be used to generate a 3-di-

mensional representation of clock transit time versus location on the chip. Figure 5.5 is such

a plot for the Aurora II CPU.

Interconnect resistance along the distribution network can significantly impact

clock skew; Figure 5.6 shows the sorted transit times for the Phil clock phase once resis-

tances are added; it is evident that these resistances must be reduced. The problem is ad-

dressed by both increasing the size of the wires that are routed for the distribution network

and by constraining this routing to use only the upper two interconnect layers, which have

a lower resistivity. Both of these actions are initiated by adding attributes in Floorplanner

to the nets in question. A script is used to identify problem nets, calculate the appropriate

153

Figure 5.5 Clock Transit Time vs. Chip Location for Aurora II CPU

30.0

200 400 600
Sorted Ordering of Delays

Figure 5.6 Sorted Clock Transit Times (With Initial Resistances)

154

0 200 400 600
Sorted Ordering of Delays

Figure 5.7 Sorted Clock Transit Times (With Final Resistances)

wire sizes, and generate a second script of attribute commands which can be invoked from

within Ffoorplanner. When resistances are reduced to less than 50 ohms per net, the clock

transit times are found to be reasonable, as shown in Figure 5.7. The analysis of resistance

is discussed further in Section 5.6.

5.6 Resistance Extraction

As a quick and easy tool, a Perl script was written to extract resistances from a de-

sign. The runtime for the FPU is 2 hours, which is reasonable since this step is used prima-

rily toward the end of the design cycle. This script utilizes a Cascade database-viewing tool

(Proman) to find resistances that are local to all datapath partitions, and then proceeds to

extract resistances for top level global nets. Since a net can be comprised of numerous

branches, the resistance for the net is derived from the longest branch. The resistances and

a summary of the percentage that each layer contributes to the average net-route are written

to a text file, which is then used by a wire sizing script. This sizing script makes use of the

following relationship:

155

mlraiio m\shres m\pathlength mlratio mlshres mZparhleneth
Resistance = —— '■— + TTT'i

Viidtn Width

m'iraiio ■ mishres mlipathlength
+ Width

The interconnect ratios (mlratio, m2ratio, m3ratio) in this equation are obtained

from the resistance extraction script and represent the percentage of a typical net that is on

a given layer. Since it is important to minimize the resistance along the clock distribution

network, these nets are routed only on the upper two interconnect layers, which have less

resistance than the lowest routing layer (a factor of two lower for the top layer). Clock wires

are sized by assuming a worst-case situation where all routing is done on the second layer.

Our current static timing analysis methodology does not consider the effect of re-

sistance, which results in a degree of inaccuracy when analyzing critical paths. A macro-

model approach for deriving RC delay has been developed but has not yet been implement-

ed [Kayssi93b]. The current script-based approach should be rewritten in C to improve per-

formance and more closely couple this step to delay calculation. In addition, the user might

specify a delay threshold below which RC delay is ignored, in order to improve the run-

time.

5.7 Determination of Gate Path Length

Improving the performance of a design is an iterative process, involving the follow-

ing steps:

1. Identify all situations where the number of gates that lie along a path exceeds the

allowable target for one clock phase. For a 4 ns clock period (250 MHz) and an aver-

age loaded gate delay of 100 ps, this target is set at 20 gates per clock phase.

2. Reduce the number of gates along a critical path, which can be done in several ways:

a) reimplement a synthesized logic block by hand, b) factor out any late arriving sig-

nals, and c) retime logic by shifting it into the previous or next clock phase. The

application of these approaches will often uncover additional critical paths and

retiming may make paths critical which were previously acceptable. Consequently,

156

it is necessary to iterate over these first two steps.

3. Identify instances where capacitance, resistance, and/or fanout result in individual

gate delays that exceed the goal of lOOps per gate and lead to path delays that are

greater than the target delay. Approaches to reducing path delay include: a) replace

DCFL gate instances with a buffered counterpart, b) change the size of the driving

gate, c) reduce fanout by using multiple copies of the driving gate, d) reduce inter-

connect capacitance through better placement, routing, and cell design, e) reduce

interconnect resistance by sizing wires and by constraining the layers used for rout-

ing.

The Cascade timing analyzer (Tactic) can be used to perform the analysis, but there

are several reasons why this is not the best solution for the first 2 steps. First, Tactic presents

paths in a graphical manner, which is beneficial for visually identifying components that

comprise the overall path delay, but tends to be inefficient for summarizing just the gate

depth along the path. A text-base report is more efficient at this point since it gives the user

flexibility in sorting and searching through the list of paths. Second, support for a visual

interface adds overhead to the runtime. For a complex design, it may be necessary to iterate

many times over the first 2 steps so the total iteration cycle needs to be no more than two

hours. In addition, at least one step performed by the current version of Tactic appears to

be extremely time-consuming, requiring several days for a large design. Finally, there are

several analysis features that are not supported by Tactic which can simplify the process of

reducing logic depth; these will be discussed below.

In order to provide an alternative for identifying and resolving logic depth, a level-

izer based on the delay-calculator traversal engine was written. This utility was originally

designed to report all paths from inputs to outputs for synthesized logic blocks and was later

extended to identify all paths between latches. In supporting the latter, it became evident

that identifying all paths from the inputs to the outputs for designs with large amounts of

connectivity can easily become a computationally intensive task. The traversal engine en-

sures that each bit of a latch is only encountered once and the original algorithm for the lev-

elizer can be summarized by the following:

157

if (inst = latch) {

start_inst = inst;

find_paths(inst,l);

}

find_paths (inst, level) {

for (i=0; i<num_load_instances(inst); i++) {

if (inst.successor_inst[i] = latch or inst.output[i] == primary .output)

add_inst_to_successor_list(start_inst,inst.successor_inst[i], level);

else find_paths(inst.successor_inst[i], level+1);

After the circuit has been traversed, a post-processing routine is invoked which

sorts through the hash table created by add_inst_to_successor() to identify paths whose

depth exceeds a level specified by the user. The result is a list of all possible paths between

inputs, outputs, and latches. The requirement of traversing all inputs to all outputs can be-

come quite costly for designs that exhibit a large degree of connectivity. Consider the

heavily interconnected example of Figure 5.8. Assuming each gate in a column drives mul-

tiple gates in the subsequent column, the number of calls to find_paths() will be on the order

of:

r, . NumColumns
r II - Gates

Column

The Wallace array of the multiply unit is a good example of a highly interconnected

circuit; the runtime for this design is approximately 12 hours. However, the runtime can be

158

Figure 5.8 Run-time Increase For High Degree of Connectivity

dramatically reduced by constraining the algorithm to find only the worst case path be-

tween latches and inputs/outputs. Doing so simply requires keeping track of the worst level

seen at any gate; this version of find_paths() can be summarized by the following:

find_paths (inst, level) {

if (level > inst.level) insUevel = level;

for (i=0; i<num_load_instances(inst); i++) {

if (inst.successor_inst[i] = latch)

add_inst_to_successor_list(start_inst, inst.successor_inst[i], level);

else if ((level+1) > inst.successor_inst[i] .level)

find_paths(inst.successor_inst[i], level+1);

This approach prevents the explosive increase in calls to find_paths() by keeping

track of only the worst-case path to each instance. Any attempt to continue expanding out-

ward in a given direction will be inhibited if a previous traversal with a longer path length

has already been encountered. The corresponding runtime for a design such as the multiply

159

uml i5 „ow .„ the order of an hour, a reducnon ,n runnme of an order of magnnude.

Several addtttona, features of the leveltzer facduate the process of reducng gate

path .ength. The use of a two-phase ,a,ch-based docking scheme allows the chance to bor-

dunng the enure active time of a Cock phase, it is possibie tha, the combmauona, logtc that

drives the input to a .a.ch may stabilize prior to the enab.tng edge of the dock. Thts stable

stgnal ts then immedtately available to drive logic in the subsequent phase. As a result, a

critical path is really compnsed of the sum of the gate-depth for the legte tha, occurs m both

clock phases. Although 20 gates per phase has been chosen as a destgn target, m selected
casesthiseonstraintcanberelaxedifmeworst-casepamthatdnves the current critical path

has fewer man 20 gates. It is important to control clock skew along these path-patrs, smce

a dock that arrives late to the first-phase Itch wiU reduce the ability to borrow time from

this phase. The levelizer generates a 3D histogram (Figure 5.9, the multiply unit) for whtch

,he x-axis is the level of the previous worst-case path, the y-axis is the level of the current

maximum path, and the 2-axis is the number of instances which have this previous-current

pair Figure5TOandFigure5.il show these plots for the overall FPU (excluding the fanc-

tionaluniWandtheaudunit^o^uratutecountU-axisJisinhibitedto make theplots more

readable. These plots represent the results from numerous iterations over the firs, 2 steps

described above. An additional option will print the worst-case path for the phase wmch

Previous

Current

Figure 5.9 Multiply Unit Critical Paths of Current and Previous Phase

160

Current
Previous

Figure 5.10 FPU Critical Paths of Current and Previous Phase (excl. FU's)

succeeds the current one; this information is useful when moving logic across latches while

performing manual retiming. The levelizer also generates a list of the 50 instances that ap-

pear most often along all paths, allowing the user to focus on the most troublesome logic
blocks.

5.8 Post-processing Optimization Utilities

Several additional functions have been incorporated into a single post-processing

Current
Previous

Figure 5.11 Add Unit Critical Paths of Current and Previous Phase

161

optimization utility, nicknamed the "gobbler" due to its ability to remove and transform

logic instances. First, automatic buffer selection can be performed by running the stand-

alone delay-calculator, which lists instances whose delay, output capacitance, or fanout ex-

ceed a user specified threshold. This text database is then used by the optimization tool to

translate instances having large delays into buffered versions with the same functionality.

Figure 5.12 compares delay, capacitance, and fanout for the FPU before and after buffer

selection. Delays are improved significantly. Capacitance decreases slightly due to several

layout optimizations that were performed in the second iteration. The large fanout points

appear in part because a reset distribution tree had not yet been implemented; other large

fanout instances correspond to the larger delay points. This comprehensive approach trades

slightly larger area and power dissipation for computational efficiency. In other words, this

approach is simple to implement but runs the risk of replacing DCFL gates with larger buff-

ered versions for instances which have individually large delays but that do not extend ap-

preciably the overall clock period.

A second function of the optimization utility involves automatically improving the

gate-depth of logic blocks by searching for certain common logic sequences. For example,

Figure 5.13 shows a sequence that occurs frequently within logic that has been synthesized

by the Cascade utility Finesse. In this case, 2 levels of logic can be removed by merging the

inputs of gate 1 and gate 3 by increasing the fanin for gate 3. Some other pattern matching

optimizations which improve either logic depth or area due to fanin are:

1. 2 successive inverters can be removed altogether, assuming they are not needed for

buffering reasons.

2. A constant input can be factored out of a gate, thereby reducing the fanin of the gate

and/or propagating the output. For instance, a logic one on a NOR gate can be passed

on to the successive gate as a logic zero. In turn, if the successive gate is a NOR func-

tion this logic zero can be factored out, allowing a reduction of the fanin of the NOR

gate. These sequences can occur as a result of poor logic synthesis, or in redundancy

that can occur at the interfaces between logic blocks.

16:

15.0
Delay

■

10.0 -

(ns)

5.0 ■

r\ r\

\After ^- Before

0 1000 2000 3000
Sorted Ordering

100.0

80.0

0 2000 4000 6000
Sorted Ordering

60.0-

40.0

20.0-

0 200 400 600 800 1000
Sorted Ordering

Figure 5.12 FPU Delay, Capacitance, Fanout Before and After Buffer Selection

3. A gate can be replaced by its dual, as in the case of a NOR gate, whose inputs are

complemented, being replaced with an AND gate.

4. Gates which are driven by the same inputs can be merged into a single gate, assuming

fanin constraints are not violated.

16?

g:J>—£ö-^> ?C>

Figure 5.13 Pattern Matching Logic Optimization

Care must be taken to not inadvertently remove redundant, yet necessary, logic. The

various stages of the clock distribution network form buffer-pair sequences which do not

serve a functional purpose but are necessary for timing reasons. To avoid problems, this

utility recognizes a "no_touch" property that can be attached to special instances that are to

be excluded from optimization. The generation of a logic one in GaAs is another such ex-

ample. A voltage of Vdd on the gate will forward bias the gate channel diode, will probably

destroy the inverting transistor, and may result in an incorrect value for the output of the

gate. A buffer whose input is tied to ground is typically used to generate a logic one. It is

important that this buffer not be removed from the design during the propagation of con-

stants; the "no_touch" property is used to ensure this.

A final function of the optimization program involves merging standard cell latch

drivers. As was discussed earlier, a simpler design style with regard to clock polarity results

if standard cells use clock buffers to match the polarity at the column drivers for datapath

latches. This driver buffers the clock locally and decodes any select signals for merged log-

ic-latch cells. Whereas a column driver is amortized across the many bits of a datapath col-

umn, it is costly to have a single driver for every standard cell latch. This tool therefore

merges the drivers for multiple latches into just one instance, constrained by a user speci-

fied maximum fanout. For the FPU, this optimization removed approximately 900 latch

drivers.

5.9 Miscellaneous Utilities

Several small tools were written to address issues such as beta ratio checking, power

rail sizing, and determination of power dissipation. The beta-ratio for a DCFL gate sets both

164

the speed and noise margins, and a mistake in a cell can prevent proper functionality. To

verify beta-ratios, a version of the delay-calculator traversal engine was used to ensure that

all versions of all gate types in a design have been checked at least once.

Power rails for datapath cells need to be sized such that the voltage drop to any cell

in the column is acceptable. A Perl script was written which will query the design database

in order to identify for each cell the sum of the widths of all enhancement and depletion

transistors that are connected to Vdd. Several empirical relationships for current as a func-

tion of transistor width, generated by iterative HSPICE runs, are used to estimate the cur-

rent for each cell. This information is then used in conjunction with the following

relationship in order to derive the width of the Vdd rail for each cell:

Widths =
pitch ■ Rsh ■ Nbits ■ icell

Vdd "mai
DRN rails

pitch = The maximum height of a datapath in microns; usually this is the maxi-

mum bit-width (32 or 64) times the effective cell pitch (60 to 70

microns)

Rsh = The sheet resistance for metal3, the layer used for routing Vdd

Nu- = The maximum bit-width for all instances of this cell
bits

heu - The cell current derived from empirical relationships

IR = The maximum allowable voltage drop along the Vdd rails
MUX

DR = A derating factor that takes into account both the fact that a column is con-

nected on the top and bottom to global Vdd and the fact that current

decreases with distance down the column; generally a value of four is

used

Nrails ~ The nUmber °f Vdd failS Witnin a Cel1

This script also generates an estimate for total power. Since the empirical relation-

ships do not consider the dynamic nature of power for buffer cells, this estimate should be

165

somewhat inaccurate. A more realistic value for power would be obtained by deriving an

empirical relationship for dynamic buffer power as a function of interconnect, fanout. and

frequency. The delay-calculator traversal engine could be used to calculate the interconnect

and fanout on a per-instance basis.

5.10 Observations About Verification

Verification consumes an ever-increasing share of design time as processors be-

come more complex. Both functionality and performance must be verified in a computer

design before it is fabricated. Timing analysis has been discussed as a means of improving

cycle time. However a design that is functionally correct may incorporate errors that limit

performance by causing additional cycles to be executed. For instance, consider the head

and tail pointers used to index into a reorder buffer. If these pointers are not advanced cor-

rectly, it is possible to operate in such a way that entries are not all allowed to be simulta-

neously active. Instructions will execute correctly, but more issue-stalls will occur since the

reorder buffer will appear to be full more often than it should. Similarly, an inefficient im-

plementation of a state machine might require unnecessary state transitions and add extra

cycles of latency to an operation. Identifying such errors involves comparing cycle counts

for a high-level architectural model with those of the actual structural implementation. A

compact loop which increments a certain memory location some number of times can be

used to detect such errors.

Among other issues, functional verification requires a choice of simulation environ-

ment. We have found that 60% to 70% of all bugs are identified using tests that are hand-

generated by the designer. Since these tests tend to be fairly compact, an environment such

as Verilog with a simulation speed of several cycles per second is appropriate. Random

testing should find 20% to 35% of errors. Since many millions of instructions will need to

be run for these tests, a compiled code simulator such as VCS, which offers a simulation

speed on the order of 30 to 50 cycles per second, is recommended. Running verification in

parallel on 10 machines for 4 months would allow approximately 5 billion cycles (a few

billion instructions) to be run. Eventually, actual application- and OS-code needs to be ver-

166

ified; for this, a hardware emulation system would be appropriate. This approach offers

simulation speeds between 500 Hertz and a few kilo-Hertz. While the use of compiled-code

simulation can be fairly transparent to the user, hardware emulation tends to involve more

man-power. At the present time, software tools that support hardware emulation are some-

what immature and inefficient, and it is not uncommon for small design changes to require

tum-around times of several days.

Functional verification of the FPU depended heavily on randomly generated tests

to exercise individual functional units, the full chip, and the FPU in the Aurora III system.

Functional units were verified though the use of randomly generated operations, operands,

and rounding modes. A specific computation was performed on both the compiled Verilog

machine model and on an actual workstation. Data results and exceptions were compared

and discrepancies were highlighted. Separate test modes were created for each of the func-

tional units to allow errors found during random testing to be quickly rerun on an individual

basis. In all, between 5 and 10 million operations were run successfully for all functional

units. Verification of a commercial chip would have to be more extensive, with many bil-

lions of operations being simulated. The level of verification performed was considered ap-

propriate for the resources of an academic effort. Hardware emulation would provide the

best support for more extensive validation.

As mentioned, chip-level verification was done in a random test generation envi-

ronment. A behavioral model for the IPU was created to feed the FPU with instructions and

data. Tests are generated from 35 primitive instruction sequences. In general, there is one

primitive for each piece of functionality in the FPU, such as add, multiply, or divide instruc-

tions. A typical sequence will execute a floating-point instruction and compare the result to

the known correct value, making the tests self-checking. The simulation environment loads

several queues at the start of a test with the correct outcome for floating-point comparisons

and stores. The primitives are randomly tiled together and a variable number of NOPS are

added. The program that results is run on the compiled-code version of the simulator. In-

stead of requiring this FPU test environment to read an actual program binary, pseudo in-

structions are used and the resulting program consists of ASCII hex values. This approach

167

to testing offers several advantages. First, because the tests are self-checkjng. there is no

need to compare results against a separate high-level behavioral model of the design. With

limited resources, it is difficult to support efforts to design separate trace-driven, behavior-

al, and structural representations of a design. Second, each random test is fairly short, on

the order of several hundred instructions, making it easy to locate errors. Even short pro-

grams typically involve several thousand instructions, making it difficult to identify errors.

Finally, each test is self-contained, which allows verification to be infinitely parallelizable.

The only limitations are the number of available workstations on a network and the number

of licensed copies of the simulation environment. Starting from the moment random veri-

fication commenced, over 200 million floating-point instructions were run successfully.

Several observations about random verification were made in our experience with

the FPU. For example, if the primitives used are not short enough, the full benefit of tiling

the primitives is not realized and instead the only benefit will be based on the number of

permutations that are derived from inserting noops. In our initial tests, each primitive start-

ed with several load instructions to initialize the operands. This meant that in the tests, each

primitive was succeeded by a load instruction, rather than all possible permutations. A con-

stant header block was therefore added to each random test. Within this header, all operands

used for computations and all results used for self-checking verification were loaded into

the first 23 registers of the floating-point register file. The remaining 9 registers were used

for dynamic results. At first, a floating-point compare instruction always ended each prim-

itive and tiling only resulted in testing pairings of compare instructions with other instruc-

tions. Again, not all permutations were being allowed. The solution made use of the

following sequence:

1. Buffer the result of the last compare in a primitive.

2. If the destination register of the first instruction of the next primitive is the source of

this compare, issue the compare and then the new instruction, otherwise issue the

new instruction followed by the compare. To reduce the occurrence of the former

condition, the source operands of the compare are always registers Fa and Fb, and

the destination of the initial instruction is always register Fc.

168

The last form of verification was performed at the system level, where the IPU and

FPU are connected. The primitives used in this simulation exercise the same functionality

as in the chip-level tests, but now consist of actual MIPS instructions. This environment

serves to more comprehensively test the actual interface between the two chips. Since the

models for both chips are fully realized, all functionality is simulated, including cache

misses. As a result, instruction and data misses lower the throughput of floating-point in-

structions.

Random verification offers an efficient means of resolving the majority of bugs in

a design. However, it fails to provide complete coverage. This is due to several reasons.

First, a designer will still tend to include assumptions in the infrastructure for random test-

ing that leave certain areas untested. For example, using random testing for the verification

of a functional unit needs to consider different regions of operation. The add unit is com-

prised of different pieces of logic that are each exercised depending on whether an align-

ment of one, no alignment, or an alignment of greater than one is necessary. Failure to force

operands to fall equally within each of these regimes would result in inadequate coverage.

Random testing makes it difficult to discover unusual boundary cases that are de-

pendent on the occurrence of a sequence of events, such as an instruction miss which occurs

for a branch, followed by a page-fault in the delay slot, and while this fault is being ser-

viced, an interrupt. A logic error might result in the wrong program-counter being selected

by the time the delay-slot instruction is finally executed. Such a sequence of events can be

quite difficult to generate, and even if several billion instructions are executed, the error

may never be encountered. As designs become more complex, interest has developed in

pursuing more formal approaches to verification.

5.11 Future Work: A Methodology for Automatic
Logic Optimization

This section will summarize several ideas for an automated approach to performing

timing analysis and logic optimization; many of the individual steps in this methodology

have been mentioned in the preceding sections. During the course of completing the timing

169

phase of the Aurora ID IPU and FPU designs, ii became clear that much effort was being

spent on the same set of tasks, each of which is well defined and reasonably straight-for-

ward to implement automatically. Pan of the challenge in implementing an automated ver-

sion of this methodology centers on how to iterate between these steps. A summary of the

methodology is:

1. Levelization is performed in order to identify paths which exceed the targeted gate

depth. Logic can be optimized in the following 3 ways:

a. Optimal synthesis for logic which has fewer than 10 inputs/outputs, perhaps using

some sort of exhaustive branch-and-bound algorithm. The majority of logic within

a design is in blocks having few inputs and producing few outputs (refer to

Table 5.2). Current synthesis tools often produce results which are far from opti-

mal; this problem is made worse by the limited library of gates available in GaAs.

Table 5.3 compares several logic blocks that were synthesized using GaAs and

CMOS cell libraries, where the latter has access to more complex gate structures.

The GaAs implementation often has many more levels than the CMOS version,

and even for CMOS, the result is often several levels away from being optimal. The

poor results for GaAs appear to be due to the technology mapping phase of the syn-

thesis process. Similar results have been found using MIS, another synthesis tool.

The need to redo large amounts of logic by hand is time consuming, and the dis-

covery of a bug in the definition of the logic may mean that the same logic must be

regenerated several times. Whereas, the original behavioral description for the

logic may be easy to understand, the subsequent structural implementation may be

quite difficult to follow.

b. Factor out late-arriving signals through the use of a mux-reduction technique. Fig-

ure 5.14 demonstrates this idea. Signal A, which might be the carry-out of an adder,

does not arrive until late in the current phase. However, the original synthesized

logic is not aware of this fact and signal A is factored into the first level of the logic

block. To solve this problem, two separate descriptions for the logic are used; one

assumes input A is a zero and the other assumes input A is a one. The output from

170

Table 5.2 Average Inputs per Output for Control Logic

Control Block
Avg Inputs per

Output
Max Inputs per

Output
Total Outpuis in

Block

convencontrol 4.524 9 21

iqcontrol 9.600 18 25

robcontrol 3.915 19 117

elogic 3.600 5 15

lqtagmemcontrol 4.000 7 24

sbcontrol 2.000 3 288

fpucontrol 15.840 77 169

precisetagmemcontrol 4.286 9 42

predecodelogicfpnew 8.840 17 25

stickybit 6.059 7 51

grsnew 7.857 12 35

Table 5.3 Gate-Depth for CMOS versus GaAs Logic Synthesis

Control Block
No. Gates
(CMOS /

GaAs)

No.
Outputs

Avg
Difference

in Gate-
Depth

Max
Difference

in Gate-
Depth

Avg Gate-
Depth

(CMOS /
GaAs)

Max
Gate-
Depth

(CMOS
/GaAs)

convencontrol 68 / 102 21 0.476 3 3.476/3.952 6/8

iqcontrol 77/140 25 1.080 4 7.400/8.480 11/13

robcontrol 217/384 117 0.333 2 3.282/3.615 8/8

elogic 20/50 15 1.733 2 3.333 / 5.067 4/6

lqtagmemcontrol 41/77 24 1.250 2 3.000/4.250 5/6

sbcontrol 444/568 288 0.000 0 1.889/1.889 2/2

fpucontrol 757/1312 169 0.420 4 6.083/6.503 15/15

precisetagmemcontrol 78 /128 42 1.429 2 3.000/4.429 6/8

predecodelogicfpnew 236/395 25 1.440 4 6.640/8.080 13/12

stickybit 133/231 51 0.353 2 5.529 / 5.882 10/10

grsnew 150/269 35 1.857 5 6.429 / 8.286 9/12

171

each description is fed into a multiplexor, whose select line is simply the late arriv-

ing signal. In this way, only 3 gate levels (1 for decoding. 2 for the multiplexor) are

added to the path-depth of the logic that generates signal A. Synthesis is still used

to generate the A=0 and A=l signals, and because much of the logic is shared

between these signals there is only a slight increase in instance count compared to

the original version. Doing this transformation by hand is tedious and makes the

resulting description more difficult to interpret.

c. Utilize a post-processing optimization phase in order to pattern match commonly

occurring logic sequences. Propagation of constants, redundant logic at the inter-

faces between logic blocks, and poor synthesis can all be addressed in this way.

2. Repartition logic across latch boundaries. This will involve moving small pieces of

logic to either the previous or next clock phase. This step might operate directly on

the design database or generate appropriate Verflog code that can be integrated into

the top level design. In either case, the user should be made aware of the changes

being made.

3. Perform the closely-coupled steps of parasitic extraction, delay calculation, static

timing analysis, and buffer sizing/selection. This stage analyzes the delay of critical

paths and iterates primarily by choosing to size an existing driver or to select a buff-

ered gate type for those instances that experience a long delay due to fanout or

interconnect parasitics. Wires along critical paths which have large resistances

late A BCD 0 BCD 1 BCD

Out

1 1 1 1 I 1 1 1
LogicO Logic 1

Figure 5.14 Factoring Late Arriving Signals Via Mux-Reduction

should be resized automatically, and this RC delay information should be included

in path delays.

Automation of this sequence of steps will save much time on tasks which are te-

dious to do by hand. Since verification and performance optimization often occur in paral-

lel, more time can be lost if bugs require repetition of some of the steps. Further, doing these

steps by hand makes the high-level Verilog description of a design more difficult to inter-

pret.

CHAPTER 6

Conclusion

This chapter summarizes the work and contributions presented in this thesis and

discusses several related future areas of research.

6.1 Summary of GaAs Technology

Many of the design constraints for GaAs DCFL, including small noise margins, low

threshold voltages, sensitivity to voltage drops along ground distribution, and over-driving

of inputs along highly capacitive nets, are a result of the Schottky diode gate of MESFET

transistors. We addressed the over-driving problem with the use of a feedback buffer,

which provides a large dynamic current for charging a wire and a smaller static current for

dc operation. The benefit of fast gate switching speeds in DCFL tends to be offset by great-

er gate-depth that results from a NOR-NOR logic topology. Transistor source resistance is

large enough to limit the use of both stacked-transistor gates and pass gates, especially in

light of small noise margins. Leakage currents are several orders of magnitude larger than

for silicon devices and constrain the maximum fanin of a DCFL gate to four inputs. In ad-

dition, this issue affects the density of SRAM components by limiting the amortization of

sense amplifiers across rows of an array. The use of dynamic logic is impractical due to the

current that flows into the gate of a MESFET transistor. Gate current also limits the degree

of fanout that can be supported by either DCFL or buffered gates. In current GaAs process-

es, interconnect has larger dimensions than in current CMOS processes. The importance of

improving metal technology in GaAs was illustrated by contrasting the expected improve-

ment to that of improving gate delays.

The current performance gains of GaAs DCFL process technology are not signifi-

173

174

cant enough to compel a current CMOS design effort to be retargeted for GaAs. Integration

levels are lower than CMOS by a factor of 5 to 10. Much of this is due to the characteristics

of ratioed logic, large leakage currents, and less efficient interconnect pitches, rather than

to a difference in minimum transistor feature size. In terms of operating frequency. GaAs

does offer faster loaded gate speeds, but this benefit is tempered by DCFL providing a

smaller range of circuit design options and by needing longer gate-depths to produce the

same functionality. Power dissipation at high frequencies has often been claimed as an ad-

vantage of GaAs. The static relationship of power dissipation in GaAs is contrasted with

the strong dynamic component in CMOS and suggests a cross-over point for frequency at

which GaAs becomes more power efficient. However, several trends in CMOS design have

weakened this argument. Power supply voltages for CMOS have dropped from 5 volts to

3.3 volts and lower, which has raised the cross-over point. More importantly, there has been

an effort to reduce power by turning off the clock to logic blocks which are not being ac-

tively utilized. Consequently, logic transitions and resulting dynamic power dissipation are

reduced. This approach is not nearly as effective for GaAs, in light of the strong static com-

ponent to power dissipation. Complementary GaAs (C-GaAs) offers the potential of ad-

dressing some of these issues, but with the caveat of being unproven at the present time. C-

GaAs will support limited stacked transistor structures, which should reduce gate-depth

along critical paths. Power dissipation for C-GaAs circuits should be lower since there is

no dc path between power and ground. Current will still flow into the gate of a transistor

and contribute a static component to power, but this is substantially less than for DCFL.

It seems unlikely that in the short term GaAs DCFL will become a significant alter-

native to CMOS for large VLSI designs. Consider Table 6.1, which shows a projection for

DCFL and C-GaAs. In addition to a process improvement of 30% for loaded gate delay, the

DCFL projection assumes that industrial-level resources are applied to the project; these re-

sources would result in both several gate-levels being removed from all critical paths and

an increase in density that translates into a 20% gain in clock frequency. For C-GaAs, a

more deeply pipelined machine might achieve a logic-depth along critical paths of 15 gates

per clock cycle. However, a more deeply pipelined design can suffer worse memory system

175

Table 6.1 Performance Projections for GaAs and C-GaAs

Technology
Avg Loaded
Gate Delay

(ps)

Gate-depth per
Clock Cycle

Clock
Frequenc\

(MHz)

DCFU1994) 100 40 250

DCFL(1995) 80 40 310

DCFL(1997) 50 36 500

C-GaAs(1997)
Conservative

100 22 450

C-GaAs(1997)
Optimistic #1

70 22 650

C-GaAs(1997)
Optimistic #2

70 15 952

latency, will require more latches, which may constrain clock frequency, and will be more

sensitive to miss-predicted branches. C-GaAs may provide a level of density for SRAM

components that is appropriate to support a combination of on-chip caches, register blocks,

and branch-prediction techniques used to reduce miss-predicted branches. A recent l|nm C-

GaAs 4K-bit SRAM provides a density of 11,600 transistors per mm2, an access time of

5.3ns, and a power dissipation of 16.2mW [Hallmark94]. In general, a target logic-depth of

15 gates per cycle will be a challenging goal for either an academic or industrial design ef-

fort. In comparison, CMOS processors have currently been demonstrated to operate at

clock frequencies in the range of 200MHz to 300MHz; at the traditional growth rate of 50%

per year, it is reasonable to expect the introduction within the next two years of CMOS pro-

cessors with clock frequencies greater than 600MHz. The basic limitations just discussed

for GaAs may not be due to technical reasons as much as to economic ones. In the absence

of volume commercial products fabricated in GaAs, there might not be sufficient financial

resources to advance the technology at a pace comparable to that of CMOS. An alternative

technology probably needs to offer at least twice the performance in order to attract design-

ers away from the large infrastructure and expertise currently available in silicon technol-

ogy.

176

6.2 Summary of FPU Architectural Issues

The architectural study is based on a trace-driven simulator which was extended to

describe the Aurora HI integer and floating-point architecture. The simulator produces per-

formance metrics, including average instruction latencies, dynamic instruction frequencies,

basic block size, bus utilization, average degree of issue, sizes for different resources, stall

sources, and cycles-per-instruction. Simulations were run using traces from the SPECfp92

benchmarks for a wide variety of architectural features.

The first of these experiments examined three issue policies for floating-point in-

structions, IOIO, IOOO, 0000 (the first and second pairs of characters mean in-order or

out-of-order for issue and completion of instructions). A number of conclusions were

drawn about the resource cost and performance benefit of each. The first policy is the sim-

plest and achieves the worst CPI, although it does support a faster clock frequency by elim-

inating the need for a reorder buffer and by simplifying issue logic. The second policy,

which utilizes more parallelism by allowing results to complete out of order, offers approx-

imately 12% better SPECfp92 performance for a moderate increase in resources and design

complexity. Dual-transfer and dual-issue of floating-point instructions were found to offer

a combined 15% improvement in CPI versus a single issue approach. The third policy,

OOOO, attempts to increase look-ahead capability by moving a data-dependent instruction

past the decode phase, into an instruction window which resides between the decode and

execute units. Ideally, this should allow a greater opportunity to find instructions without

dependencies. However, the realized performance gains are small (a few percent), due pri-

marily to an increased utilization of the reorder buffer. While most instruction types pro-

duce a result which can be used immediately upon writing the reorder buffer, floating-point

comparison and store instructions must wait until the corresponding entry reaches the head

of the reorder buffer in order to ensure precise handling of memory exceptions. Most of

these synchronization stalls are due to branch-on-compare sequences. An 0000 policy re-

sults in more instructions being active, and a corresponding increase in the number of reor-

der buffer entries that precede a floating-point compare, which in turn reduces the intended

177

benefit of this issue policy. Further, the resources required by an OOOO policy are quite

substantial; two reservation station entries per functional unit can add 25% to overall chip

area. In other words, the additional resources needed to implement 0000 are equivalent

to the area difference between a 2-cycle pipelined multiply unit and a 5-cycle iterative unit.

The performance difference for this multiply unit trade-off is 10%, which is an improve-

ment not matched by switching from IOIO to 0000. Several additional aspects of an out-

of-order issue policy are discussed, including design complexity and approaches for select-

ing instructions to be issued from a reservation station. All initial simulation experiments

were run with large resources in order to identify an upper bound for performance. Infor-

mation from these runs was used to choose a more reasonable allocation of resources which

results in only a small degradation in performance (a few percent) from the ideal case of

unlimited resources.

Although the FPU with the chosen issue policy (1000) and configuration generates

few stall cycles due to the sizes of various resources, the other major stall source, branch-

on-FPU comparisons, was found to cause a significant number of stalls on some bench-

marks. A set of instruction sequences, consisting of a floating-point load followed by a

compare and then a branch which depends on the result of the compare, was found to be

common among these programs. A number of approaches were discussed for reducing the

large latency associated with the compare instruction, including: moving ahead in time the

transfer point for floating-point instructions, improving the primary memory system, and

reordering code for these sequences in order to place more useful unrelated work between

the load, compare, and branch instructions. All of these issues were investigated in the con-

text of both single- and dual-issue designs. The best design point that resulted would reduce

compare latency to simply the time needed to perform the comparison and transmit the re-

sult back to the IPU; the overall performance gain was approximately 10%, with some in-

dividual programs improving by as much as 23%.

Integration levels are low in GaAs and several techniques for improving memory

system performance were discussed, including both greater bandwidth through the support

of double-word load and store instructions, and data prefetching. An optimistic upper

178

bound for performance improvement of the former was found to be 10%. whereas the latter

results in an overall reduction in CPI of 159c and improvement for individual benchmarks

of as much as 60%.

A number of resource allocation issues were examined. First, performance was

compared to resource requirements for functional units of various latencies. For example,

a 2-cycle add unit offers only a 2% improvement in CPI versus a 3-cycle design, but at the

expense of a 20% increase in area. However, some trade-offs are not as clear-cut, such as

the multiply unit decision mentioned above. A 2-cycle pipelined multiply unit occupies

twice the area of a 5-cycle iterative version, but achieves a 10% reduction in CPI. Ultimate-

ly, integration constraints prompted the selection of the slower, smaller multiply unit. A dif-

ferent solution might be reached in a CMOS design. Second, the allocation of transistors

was examined in the context of queue and reorder buffer entries. Queue entries are fairly

inexpensive, while reorder buffer entries are more costly since they are wider and require

more read and write ports. Two to three entries are required for the load and store queues,

which corresponds to the observation that most applications use the double precision for-

mat, requiring two loads or stores per operand. Finally, the area implications for each of the

three issue policies were discussed. As mentioned, in-order issue and completion is the sim-

plest, while out-of-order issue and completion requires substantially more storage space

than the other policies.

Instruction and data queues allow the integer unit to slip ahead of the FPU, since the

IPU does not necessarily need to stall as a result of floating-point data dependencies or re-

source conflicts. Decoupling queues also serve to hide latency caused by chip crossings and

can lessen the impact of having different clock frequencies for the IPU and FPU, a situation

that can result from differences in the width of datapaths. However, the use of queues does

make support of precise exceptions more difficult. Characteristics that are unique to both

memory and floating-point computational exceptions were discussed and several approach-

es are presented for handling these issues which do not have a significant impact on either

chip area or performance.

In order to reduce pin count, the existing primary data cache busses were also used

179

for transferring instructions and data between the IPU and FPU. Up to two floating-point

instructions can be transferred per cycle, which is the bandwidth needed to support dual is-

sue of instructions in the FPU. Load data can originate from several sources, including the

primary data cache, the write cache, the prefetch unit, or the secondary memory system.

Floating-point store instructions are somewhat more complex than their integer counter-

parts, primarily because the data to be stored arrives sometime after the corresponding in-

struction. Several alternatives were proposed for handling both loads and stores.

Altogether, these cases have been implemented in efficient manner which has little impact

on performance and which requires only a small number of additional I/O pins.

Achieving high performance under all conditions in a computer having integer and

floating-point capability requires attention to a number of details. An example of this cov-

ered in the dissertation is the use of result busses. As more parallelism of instruction exe-

cution occurs in the FPU, more demand is placed on the bus that is used to write results

from an execution unit to the reorder buffer. The choice of using two result busses corre-

lates with the average degree of issue of 1.3 instructions per cycle. The benefit of providing

hardware support for square root is also analyzed. This operation is used mostly by multi-

media applications, in which it is used to translate graphic-based objects. A dedicated

square root instruction can improve the performance of the one SPECfp92 benchmark that

relies on this operation by 50%, and overall across all benchmarks by 7% to 9%. Another

trade-off which was analyzed was floating-point division, which can be implemented by re-

ciprocal algorithms which use the multiply unit. However, the impact on performance in

doing so is quite large, since frequently occurring multiply instructions cannot issue if a di-

vision operation is outstanding. The effect of miss-predicted branches on floating-point

code was also considered. Because the basic block size for floating-point code is larger than

that of integer code, there is less opportunity for branch prediction to improve performance.

The static prediction policy used by the Aurora HI architecture degrades CPI on floating-

point code by only about 4%, compared to a perfect prediction policy; integer code can suf-

fer a much larger penalty, on the order of a 30% degradation in CPI. Finally, simulation

accuracy and run-time speed for trace-driven simulation is examined. Several benchmarks

180

are run for both the first 50 million and the first billion instructions and several metrics are

used to compare the difference in results. While most benchmarks experience only a feu

percent change in CPI, one program (spice2g6) does see a 159c difference. Consequently,

sampling should be used for reasons of both accuracy and simulation speed (but was not

used in the Aurora HI simulator due to time constraints for implementation and verifica-

tion).

The architectural investigation was concluded by summarizing the current state of

microprocessor performance, through the use of SPEC ratings. Five versions of the Aurora

HI FPU design were evaluated, including a 250MHz baseline. One of these designs empha-

sized the extraction of instruction-level parallelism through greater complexity while an-

other focused on a simpler design which runs at a faster clock frequency. The other versions

were projections of the baseline in light of expected technology improvements. The process

technology that supports the FPU design has not changed in over two years. However, a

newer version will soon be available and should decrease the average loaded gate delay by

10% to 40%. The final Aurora m design achieves a SPEC rating of 300, which compares

favorably to the highest performance processors currently available (SGI TFP = 310, IBM/

Motorola PowerPC 620 = 300, IBM Power2 = 274). Overall, improvements in clock fre-

quency have a greater impact on improving floating-point performance than do architectur-

al or algorithmic improvements. A number of variables which are not reflected in these

SPEC ratings are also mentioned, including better code reordering, utilization of a larger

register file, support for double-word loads and stores, and support for a hardware square

root instruction. Together, these features might conservatively improve performance by an

additional 20% to 30%, resulting in a SPEC rating in excess of 400.

While many of the architectural trade-offs presented are certain to be familiar inter-

nally to industry development efforts, this dissertation represents a unique, comprehensive,

and accessible summary of important issues for supporting high-performance floating-

point execution.

181

6.3 Floating-Point Implementation Issues

The results of simulation studies were applied to the design of an FPU for the Au-

rora EQ system in a GaAs DCFL technology. Adders of various sizes are basic components

used in all of the functional units, so several alternatives were evaluated. A carry-skip de-

sign was not chosen since the small fanin that is a characteristic of GaAs increases the num-

ber of gate levels needed for the skip logic. Similarly, a group-4 carry look-ahead adder

requires several additional gate-levels compared to the Ling-modified carry-select ap-

proach that was selected. Much of the motivation for the functional unit designs originated

with work done elsewhere, but has been extended in order to accommodate differences that

result from using GaAs. Also, a number of corrections to the original references were dis-

covered during the verification of these units. More than 5 million random test vectors were

performed for all computational units. New implementations for leading-one prediction

and rounding logic in the add unit were presented. The conversion unit that is described is

an original design that can generate any of 6 conversion operations with a latency of 2 cy-

cles. The dissertation also examines a general set of implementation issues, including ap-

proaches for supporting precise exceptions without incurring a performance penalty, ways

of handling floating-point loads and stores, the use of predecoding to reduce critical path

depth, and design-for-test features.

6.4 CAD Support for High Performance VLSI
Designs

The dissertation discusses a number of analysis tools that have been developed to

provide feedback about timing and functionality. Many of these utilities are based on a de-

lay calculation network traversal routine obtained from Cascade Design Automation. Ini-

tially, this delay calculator was updated to utilize a macro-model approach developed by

another student in our research group. Several utilities were developed to aid verification

of this new delay-calculator, the predictions of which have been found to be within 10% of

HSPICE generated delays for all cases and within 7% for more than 60% of cases. The der-

ivation of delays also depends on accurate parasitic extraction; several utilities were written

182

to address accuracy limitations in the physical design system that we used. These include

the capability to incorporate capacitances obtained from commercial extraction tools into

the delay calculation routines and the ability to analyze and adjust interconnect resistance

through wire sizing and specification of which layers are be used during routing.

The first utility based on the delay traversal routine addresses a certain type of tim-

ing hazard that can result from a two phase level-sensitive clocking scheme and which can

limit the frequency at which a chip will operate. More rigorous nomenclature can aid a de-

signer in recognizing these cases, but this is often difficult because the logic can be quite

complex. To ensure completeness, this utility provides an automated approach for identi-

fying these errors.

Several programs were written to help analyze the clock distribution networks of

the Aurora UJ chips. The primary one is also based on the delay traversal routines and gen-

erates a ready-to-run HSPICE netlist for each clock phase of the design. As with other de-

lay-calculator based routines, capacitances generated outside of the Cascade environment

(via Dracula or Mentor Graphics) can be incorporated into the output netlist. After HSPICE

is run for both clock phases, several analysis scripts are used to provide different ways of

analyzing the data, including sorted 2D plots of skew, 3D plots of clock transit times versus

chip location, and a textual listing of latch-to-latch skew.

To complement the Cascade timing analyzer for the analysis of logic depth, a lev-

elizer based on the delay traversal routine was written. The use of a two phase latch-based

clocking scheme allows borrowing time from the clock phase which precedes a critical

path. The levelizer generates 3D histograms for which the x-axis is the level of the previous

worst-case path, the y-axis is the level of the current maximum path, and the z-axis repre-

sents the number of instances which have this previous-current pair. An additional option

will print the worst-case path for the phase which succeeds the current one; this is beneficial

when moving logic across latches while performing manual retiming. The levelizer also

generates a list of the 50 instances that appear the most frequently along all paths, allowing

the user to focus on the most troublesome logic blocks.

183

Several additional functions were added to an existing post-processing optimiza-

tion utility obtained from Cascade. First, automatic buffer selection can be performed by

running a stand-alone version of the delay-calculator. The resulting text database of delays.

capacitance, and fanout is then utilized by the optimizer to translate instances with large

delays into buffered versions which have the same functionality. Second, the optimizer im-

proves gate-depth by searching for certain common logic sequences. This pattern-matching

approach recognizes redundant logic that can occur between the interface of two logic

blocks. This utility also merges the drivers for multiple latches into just one instance, con-

strained by a user-specified maximum fanout. In the FPU, this optimization removed ap-

proximately 900 latch drivers.

Several smaller utilities were written to check beta ratios, size power rails, and de-

termine power dissipation. Under the category of future work, several ideas are also pre-

sented concerning an automated approach for performing timing analysis and logic

optimization. The methodology discussed consists of the following steps: 1) levelization in

order to identify paths which exceed the targeted gate depth, 2) optimal logic synthesis for

logic which has less then 10 inputs/outputs (the majority of logic within a design is gener-

ated by a relatively small number of inputs and produces a small number of outputs), 3) log-

ic retiming across latch boundaries, and 4) close coupling for the steps of parasitic

extraction, delay calculation, static timing analysis, and buffer sizing/selection. None of

these steps are innovative, but the overall automated system can significantly improve de-

sign time and reduce tedious operations that would otherwise be performed by hand.

The dissertation concludes with a brief discussion of functional verification, espe-

cially as it pertains to random testing. This approach focused on three areas: computation

units, chip-level, and system level. Several different simulation environments were created

to support generation and self-checking validation of both random numerical operations

and random instruction sequences. Over 5 million computations were simulated for each

functional unit and over 200 million instructions were simulated in all.

Appendix A

Aurora III Chip Layout

184

Appendix B

Corrections to Add Unit
Logic

1 Generation of Guard, Round, and Sticky Bits

The nomenclature used for the following equations is defined in [Quach91a],

[Quach91c]. Primary inputs are defined as:

expAbs exponent of larger operand

G intermediate guard bit that is generated from alignment shifter

R intermediate round bit that is generated from alignment shifter

5 intermediate sticky bit that is generated from alignment shifter

The final guard, round, and sticky bits are given the names, respectively: bn, bnpl, s.

This logic is necessary because the alignment shifter does not zero out the guard and/or

round bits for a shift greater than the width of the mantissa (53-bits). As a result of the hid-

den bit, the sticky bit may need to be set for a shift greater than the mantissa width; this

action is not performed by the alignment logic that generates the intermediate sticky bit.

The revised equations, which differ from the those presented in the above papers, are:

Es54 = expAbs[5] & expAbs[4] & ~expAbs[3] & expAbs[2] & expAbs[l] & ~ex-

pAbs[0]

Esgt55A = expAbs[5] & expAbs[4] & ~expAbs[3] & expAbs[2] & expAbsfl] & ex-

pAbs[0]

Esgt55B = NAND{~expAbs[10:6]}

Esgt55C = expAbs[5] & expAbs[4] & expAbs[3]

185

186

Esgt55 = Esgt55A + Esgt55B + EsgtSSC

Es09 =AND{expAbs[10:lJJ

bn = (~Es09 + EslO) <fc -Es54 & -Esgt55 & G

bnpl = Es54 + (~Es54 & (Es09 + Esgt55 + -R))

s = (-Es09 & -Es54 & ~S) + (Es54 & R) + (Es54 & S) + Esgt55

2 Additional Rounding Logic

The nomenclature used for the following equations is defined in [Quach91a],

[Quach91c]. This section also summarizes revised versions for some of the logic presented

in these papers. Primary inputs are defined as:

addORsub operation (addition = 0, subtraction = 1)

Eo effective operation, considering sign of operands (addition = 0, subtraction

1)

Ccabar carry-out of mantissa adder (Cin = 0 carry tree)

Es09 AND of the complement of the high bits of larger exponent

EslObar lsb of larger exponent

Cexp carry-out of exponent adder, used to determine which operand is larger

FsOO msb of A+B+1 sum of mantissa adder

FslO msb of A+B+l sum of mantissa adder

551 XOR of lsb' s of input operands

552 XOR of lsb+1' s of input operands

bn guard bit

bnpl round bit

187

s sticky bit

Sa sign of RS operand

Sb sign of RT operand

RM rounding mode (RN = 0, RZ = 1,RP = 2, RM = 3)

Normalization of the result falls into several classes: one right shift (ORS), no shift

(NXS), many left shift (MLS), one left shift (OLS). The conditions which define these

classes are:

ORS - -Eo & -Ccabar;

NXS = (-Eo & Ccabar) + ((Eo & -Es09) & ((FslO & ~(bn + bnpl + s)) + (FsOO &

(bn + bnpl + s))))

MLS = Eo&Es09

OLS = (Eo & ~Es09) & ((-FslO & -(bn + bnpl + s)) + (-FslO & (bn + bnpl + s)))

The result sign is defined as:

Se = (Cexp & Sa) + (-Cexp & -Ccabar & -Sb & addORsub) + (-Cexp & -Ccabar &

Sb & -addORsub) +(-Cexp & Ccabar & Sa)

For each of the rounding modes, two results are produced: CinRX, which indicates

whether a round is needed, and qRX which is the least-significant-bit to be shifted in during

a normalization.

Round-to-nearest:

A=Eo& Es09 & EslObar & (-bn + FsOO) & (S52 + -bn)

B = (-Eo & S52 & (bn + bnpl +s + S51)) + (Eo & Es09 & -EslObar);

C = -Eo&bn& (bnpl +s + S52);

D-(Eo& -Es09 & (-bn + (bn & -bnpl &-s & S52))) + (Eo & Es09 & -EslObar

&bn& S52);

E = Eo& -Es09 & -bn & (-bnpl + -s);

188

CinRS-A + (-Ccabar & B) + (Ccabar & C) + (FsOO & D) + (-FsOO & E)

qRN = (-bn & bnpl &s) + (bn & -bnpl)

Round-to-Zero:

CinRZ = (~Es09 & Eo & -(bn + bnpl + s)) + (Es09 & Eo & ~bn & -Ccabar);

qRZ = bn*(s + bnpl);

Round-to-plus-infinity:

roundMLSenCin = -bn + (-EslObar + FsOO) & (-EslObar + Ccabar)

CinRPpNXS = ((((Eo & (Se + (-bn & -bnpl & -s)))) + (-Eo & (Se & (bn + bnpl

+ s)))));

CinRPppNXS = NXS & S52 & (CinRPpNXS A Ccabar)

CinRPpOLS = (((-Se & -bn) + (Se & -bn & -bnpl & -s)))

CinRPppOLS = OLS & CinRPpOLS & S52

CinRPpMLS = MLS & roundMLSenCin & ((-Se & bn & S52 & -Ccabar) + (Eo &

-bn & S52 & -Ccabar))

CinRP = (ORS & -Se & (S52 +bn + bnpl + s)) + CinRPppNXS + CinRPppOLS +

CinRPpMLS

qRP = (-Se & bn) + (Se & ((-bn &s) + (-bn & bnpl) + (bn & -bnpl & ~s))) + (MLS

&bn)

Round-to-minus-infinity:

CinRMpNXS = ((((Eo & (Se + (-bn & -bnpl & -s)))) + (-Eo & (Se & (bn + bnpl +

s)))));

CinRMppNXS = NXS & S52 & (CinRMpNXS A Ccabar)

CinRMpOLS = (((Se & -bn) + (-Se & -bn & -bnpl & -s)))

CinRMppOLS - OLS & CinRMpOLS & S52

189

CinRMpMLS = MLS & roundMLSenCin & ((Se & Eo & S52 <£ -Ccabar) + (Eo &

-bn & S52 & -Ccabar))

CinRM = (ORS & Se & (S52 + bn + bnpl + s)) + CinRMppNXS + CinRMppOLS +

CinRMpMLS

qRM = (Se & bn) + (-Se & ((-bn &s) + (~bn & bnpl) + (bn & -bnpl & ~s))) + (MLS

&bn)

Finally, a signal is needed to determine whether the output of the mantissa adder should

be complemented:

ComplSORPpNXS = -S52 & -(CinRPpNXS A Ccabar)

ComplSORMpNXS = -S52 & -(CinRMpNXS A Ccabar)

roundMLSenComplSO = (bn & EslObar & -S52 & FsOO) + (bn & EslObar & -S52

& Ccabar)

ComplSOpMLS = MLS & ((-Eo & ~bn & ~RM[0] & ~S52) + (Se &bn& ~RM[0] &

~S52) + (~RM[0] & -552 & Ccabar) + (RM[0] & ~S52 & Ccabar)

+ (-Se &bn& RM[0] & ~S52) + (-Se & -Eo & RM[0] & -S52) +

roundMLSen ComplSO)

ComplSO = (RM[0] & OLS & -(CinRMpOLS + S52)) + (-RM[0] & OLS & -(CinR-

PpOLS + S52)) + (-RM[0] & ComplSORPpNXS & NXS) + (RM[OJ &

ComplSORMpNXS & NXS) + ComplSOpMLS

Appendix C

References used for plots of
clock frequency vs. year
and transistor count vs.

year

[Benschneider89] [Benschneider89] [Birman90] [Darley90] [Elkind87] [Fos-

sum85] [Fuccio88] [Gavrielov86] [Gosling81] [Ho85] [Ide92] [Jouppi88] [Jouppi89]

[Jouppi89] [Kaneko89] [Kasai85] [Kohn89] [Komal85] [Komori89] [Kawakami86] [Ka-

wasaki89] [Lu88] [McAllister86] [Molnar89] [Montoye90] [Nakayama89] [Okamoto91]

[Oehler90] [Papamichalis88] [Rowen88] [Schutz91] [Shimazu89] [Sit89] [Sohie88] [Stav-

er87] [Steiss91] [Takeda85] [Takla84] [Taylor90] [Tran85] [Troutman86] [Ware82]

[Ware84] [Wolrich84]

190

Bibliography

[Atkins68]

[Benschneider89]

[Benschneider89]

[Bewick88]

[Birman90]

[Bose87]

[Brown92a]

[Brown92b]

[Brown93]

[Chandna94]

[Chen94]

Atkins, D., "Higher-Radix Division Using Estimates of the Divisor
and Partial Remainders," IEEE Transactions on Computers, C-
17:925-934, 1968.

Benschneider, B. J., et al., "A 50MHz Uniformly Pipelined 64b
Floating-Point Arithmetic Processor," ISSCC, 1989.

Benschneider, B. J., et al., "A Pipelined 50-MHz CMOS 64-bit
Floating Point Arithmetic Processor," IEEE Journal of Solid-State
Circuits, vol. 24, no. 5, pp. 1317-1325, Oct. 1989.

Bewick, G., et al., "Approaching a Nanosecond: A 32 bit Adder,"
IEEE Press, pp. 221-226, 1988.

Birman, M., et al., "Developing the WTL3170/3171 Sparc
Floating-Point Corprocessors," IEEE Micro, pp. 55-64, Feb. 1990.

Bose, B. K., et al., "Fast Multiply and Divide for a VLSI Floating-
Point Unit," Proceedings of Eighth Symposium on Computer
Arithmetic, pp. 87-94, 1987.

Brown, R.B., et al., "GaAs RISC Processors," Invited Paper, 1992
GaAs IC Symposium, pp. 81-84, Oct. 1992.

Brown, R. B., "Compound Semiconductor Device Requirements
for VLSI," Gallium Arsenide and Related Compounds 1992, pp.
857-862, Sep. 1992.

Brown, R. B., et al., "Gallium Arsenide Process Evaluation Based
on a RISC Mircroprocessor Example," IEEE Journal of Solid-State
Circuits Conference, vol. 28, no. 10, pp. 1030-1037, Sep. 1993.

Chandna, A., "GaAs MESFET Static RAM Design For Embedded
Applications," Doctoral Thesis, University of Michigan, 1994.

Chen, T., et al., "A Performance Study of Software and Hardware
Data Prefetching Schemes," International Symposium on Computer

191

192

[Cvetanovic94]

[Darley90]

[Diefendorff94]

[Dobberpuhl92]

[Elkind87]

[Ercegovac87]

[Ercegovac89]

[Ercegovac97]

[Fandrianto87]

[Fandrianto89]

[Fossum85]

[Fu92]

Architecture, Chicago. Illinois, pp. 223-232. May 1994.

Cvetanovic. Z.. "Chactenzation of Alpha AXP Performance Using
TP and SPEC Workloads." International Symposium on Computer
Architecture, Chicago, Illinois, pp. 60-70. May 1994.

Darley, M., et al., "The TMS390C602A Floating-Point
Coprocessor for Sparc Systems," IEEE Micro, pp. 36-47, Jun. 1990.

Diefendorff, R., et al., "Evolution of the PowerPC Architecture,"
IEEE MICRO, pp. 34-49, April 1994.

Dobbeipuhl, D., "A 200-MHz 64-b Dual-Issue CMOS
Microprocessor," IEEE Journal of Solid-State Circuits, vol. 27, no.
11, Nov. 1992.

Elkind et al., "A Sub 10ns Bipolar 64 Bit Integer/Floating Point
Processor Implemented on Two Circuits," IEEE Press, pp. 101-104,
1987.

Ercegovac, M. D., et al., "On-the-Fly Conversion of Redundant
into Conventional Represenations," IEEE Transactions on
Computing, vol. C-36, pp. 895-897, Jul. 1987.

Ercegovac, M. D., et al., "On-the-Fly Rounding for Division and
Square Root," Proc. 9th IEEE Symposium on Computer Arithmetic,
Santa Monica, CA, pp. 169-173, Sept. 1989.

Ercegovac, M. D., et al., "On-the-Fly Rounding," IEEE
Transactions on Computers, vol. 41, No. 12, pp. 1497-1503, Dec.
1992.

Fandrianto, J. "Algorithm for High Speed Shared Radix 4 Division
and Radix 4 Square-Root," Proc. 8th IEEE Symposium on
Computer Arithmetic, Como, Italy, pp. 73-79, May 1987.

Fandrianto, J. "Algorithm for High Speed Shared Radix 8 Division
and Radix 8 Square-Root," Proc. 9th IEEE Symposium on
Computer Arithmetic, Santa Monica, CA, pp. 68-75, Sep. 1989.

Fossum, Grundmann, Blaha, "Floating Point Processor for the VAX
8600," IEEE Press, 1985.

Fu, J. W. C, et al., "Stride directed prefetching in scalar
processors," In Proc. of the 25th International Symposium on
Microarchitecture, pp. 102-110, Dec. 1992.

[Fuccio88] Fuccio, M. L.„ et al., "The DSP32C: AT&T's Second-Generation

193

[Fulkerson91]

[Gavrielov86]

[Gosling81]

[Hallmark94]

[Harata87]

[Ho85]

[Hokenek90]

[Iacobovici88]

[Ide92]

[IEEE88]

[Johnson91]

[Jouppi88]

[Jouppi89]

Floating-Point Digital Signal Processor." IEEE Micro, pp. 30-48.
Dec. 1988.

Fulkerson, D. E., "Feedback FET Logic: A Robust. High-Speed.
Low-Power GaAs Logic Family," IEEE Journal of Solid-State
Circuits, Vol. 26, pp. 70-74, Jan. 1991.

Gavrielov, M., et al., "The NS32081 Floating-Point Unit:
Architecture and Implementation," IEEE Micro, pp. 6-12, Apr.
1986.

Gosling, et al., "A Chip-Set for a High-Speed Low-Cost Floating-
Point Unit," IEEE Press, 1981.

Hallmark, J., et al., "0.9V DSP Blocks: A 15ns SRAM and a 45ns
16-bit Mutiply/Accumulator," 1994 GaAs IC Symposium,
Philadelphia, Pennsylvania, pp. 55-58, Oct. 1994.

Harata, Y, et al., "A High-Speed Multiplier Using a Redundant
Binary Adder Tree," IEEE Journal of Solid-State Circuits, vol. SC-
22, no. 1, pp. 28-34, Feb. 1987.

Ho, et al., "A High Performance 1.25 microns CMOS Floating
Point Multiply/Accumulate Chip," IEEE Press, 1985.

Hokenek, E., et al., "Leading-zero Anticipator (LZA) in the IBM
RISC System/6000 Floating-Point Execution Unit," IBM Journal of
Research and Development, vol. 34, no. 1, pp. 71-77, Jan. 1990.

Iacobovici, S., "A Pipelined Interface for High Floating-Point
Performance with Precise Exceptions," IEEE Micro, pp. 77-87, Jun.
1988.

Ide, N., et al., "A 320 MFLOPS CMOS Floating-Point Processing
Unit For Superscalar Processors," IEEE Custom Integrated Circuits
Conference, pp. 30.2.1-30.2.4, 1992.

An American National Standard: IEEE Standard for Binary
Floating-Point Arithmetic. ANSI/IEEE Standard No. 754,
American National Standards Institute, Washington, DC, 1988.

Johnson, M., Superscalar Microprocessor Design, Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

Jouppi, N. "MultiTitan Floating Point Coprocessor," DEC Internal
Report, 1988.

Jouppi, N., et al., "A Unified Vector/Scalar Floating-Point

194

[Jouppi89]

[Jouppi90]

[Kaneko89]

[Kasai85]

[Kawakami86]

[Kawasaki89]

[Kayssi93]

[Kayssi93]

[Kohn89]

[Komal85]

[Komori89]

[Klaiber91]

Architecture." Association for Computing Machinery. 1989.

Jouppi. N.. et al., "A Unified Vector/Scalar Floating-Point
Architecture," Association for Computing Machinery, pp. 134-14"*
1989.

Jouppi, N., "Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers," In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pp. 364-373, May 1990.

Kaneko, et al., "A VLSI RISC with 20-MFLOPS Peak, 64-bit
Floating-Point Unit," IEEE Journal of Solid-State Circuits, vol. 24,
no. 5, pp. 1331-1340, Oct. 1989.

Kasai, M., et al., "A Single Chip CMOS Floating Point Signal
Processor," CICC, 1985.

Kawakami, Y., et al., "A 32b Floating Point CMOS Digital Signal
Processor," ISSCC, pp. 86-7, 1986.

Kawasaki, S., et al., "A Floating-Point VLSI Chip for the TRON
Architecture: An Architecture for Reliable Numerical
Programming," IEEE Micro, pp. 26-44, Jun. 1989.

Kayssi, A., et al., "Delay Modeling for GaAs DCFL Circuits,"
GaAs 1C Symposium, San Jose, California, pp. 67-70, Oct. 1993.

Kayssi, A., et al., 'The impact of signal transition time on path
delay computation," IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 40, no. 5, pp. 302-309,
May 1993.

Kohn, et al., "A 1,000,000 Transistor Microprocessor," ISSCC,
1989.

Komal, A., et al., "An IEEE Standard Floating Point Chip," ISSCC,
pp. 18-19,1985.

Komori, S., et al., "A 40-MFLOPS 32-bit Floating-Point Processor
with Elastic Pipeline Scheme," IEEE Journal of Solid-State
Circuits, vol. 24, no. 5, pp. 1341-1347, Oct. 1989.

"An architecture for software-controlled data prefetching," In
Proceedings of the 18th Annual International Symposium on
Computer Architecture, pp. 43-53, 1991.

[Laha88] Laha, S., et al., "Accurate Low-Cost Methods for Performance

195

[Lehmanöl]

[Ling81]

[Liu93]

[Lu88]

[Magenheimer87]

[Majerski67]

[Majerski85]

[Makino93]

[McAllister86]

[Molnar89]

[Montoye90]

[Montoye90]

[Montuschi93]

Evaluation of Cache Memory Systems." IEEE Transactions on
Computers, vol. 37. no. 11, pp. 1325-1336. 1988.

Lehman, M, et al., "Skip techniques for high-speed cany-
propagation in binary arithmetic units," IRE Transaction on
Electronic Computers, Dec. 1961.

Ling, H., "High-Speed Binary Adder," IBM Journal of Research
and Development, vol. 25, no. 3, pp. 156-166, May 1981.

Liu, L., et al., "Cache Sampling by Sets," IEEE Transactions on
VLSI Systems, Vol. 1, No. 2, pp. 98-105, 1993.

Lu, P. et al., "A 30-MFLOP 32b CMOS Floating-Point Processor,"
ISSCC, pp. 28-29, 1988.

Magenheimer, D. J., et al., "Integer Multiplication and Division on
the HP Precision Architecture," Association for Computing
Machinery, pp. 90-99, 1987.

Majerski, S., "On determination of optimal distribution of carry
skips in adders," IEEE Transactions on Computers, EC-16, Feb.
1967.

Majerski, S., "Square-Rooting Algorithms for High-Speed Digital
Circuits," IEEE Transactions on Computers, Vol. C-34, No. 8, Aug.
1985.

Makino, H., et al., "A 8.8-ns 54x54-bit Multiplier Using New
Redundant Binary Architecture," International Conference on
Computer Design, pp. 202-205, 1993.

McAllister, W., et al., "An NMOS 64b Floating-Point Chip Set,"
ISSCC, pp. 34-35,1986.

Molnar, et al., " A 40MHz 64-bit Floating-Point Co-Processor,"
IEEE Solid-State Circuits Conference, 1989.

Montoye, R. K., et al., "Design of the IBM RISC System/6000
Floating Point Execution Unit," IBM Journal of Research and
Development, vol. 34, no. 1, pp. 59-70, Jan. 1990.

Montoye, et al., "An 18ns 56-bit Multiply-Adder Circuit," ISSCC,
1990.

Montuschi, P. et al., "Reducing Iteration Time When Result Digit is
Zero for Radix 2 SRT Division and Square Root with Redundant
Remainders," IEEE Transactions on Computers, vol. 42, no. 2, pp.

196

[Mulder91]

[Nagle90]

[Nagle91]

[Nakayama89]

[Oehler90]

[Oettel92]

[Okamoto91]

[Oklobdzija85]

[Papamichalis88]

[Peng87]

[Poursepanj94]

[Putti93]

[Quach90]

239-246. Feb. 1993.

Mulder. J., "An area model for on-chip memories and its
application," Journal of Solid-State Circuits, vol. 26. no. 2. pp. 98-
106, 1991.

Nagle, D., "Floating Point Simulation for the GaAs Micro-
Supercomputer," University of Michigan - Internal Report, 1990.

Nagle, D., "Hiding Latency in the GaAs Floating Point Unit,"
University of Michigan - Internal Report, Apr. 1991.

Nakayama, T., et al., "A 6.7-MFLOPS Floating-Point Coprocessor
with Vector/Matrix Instructions," IEEE Journal of Solid-State
Circuits, vol. 24, no. 5, pp. 1324-1330, Oct. 1989.

Oehler, R. R., et al., "IBM RISC System/6000 Processor
Architecture," IBM Journal of Research and Development, vol. 34,
no. 1, pp. 23-36, Jan. 1990.

Oettel, R., Internal Report, Cascade Design Automation, 1992.

Okamoto, F., et al., "A 200MFLOPS 100MHz 64b BiCMOS
Vector-Pipelined- Processor," ISSCC, pp. 256-7, 1991.

Oklobdzija, V. G., et al., "Some Optimal Schemes for ALU
Implementation in VLSI Technology," Proceedings of Seventh
Symposium on Computer Arithmetic, pp. 2-8, 1985.

Papamichalis, P., et al., 'The TMS320C30 Floating-Point Digital
Signal Processor," IEEE Micro, pp. 13-29, Dec. 1988.

Peng, V, et al., "On the Implementation of Shifters, Multipliers,
and Dividers in VLSI Floating-Point Units," IEEE Press, pp. 95-
101,1987.

Poursepanj, A., et al., "The PowerPC 603 Microprocessor:
Performance Analysis and Design Trade-offs," IEEE Press, 1063-
6390/94,1994.

Putti, D., 'The Design and Implementation of the Aurora UJ Divide
Unit," Technical Report, University of Michigan, 1993.

Quach, N., et al., "An Improved Algorithm For High-Speed
Floating-Point Addition," Computer Systems Laboratory, Stanford,
1990.

[Quach90] Quach, N., et al., "High-Speed Addition in CMOS," Stanford

197

[Quach91a]

[Quach91b]

[Quach91c]

[Quach91d]

[Riepe93]

[Riepe94]

[Robertson58]

[Rowen88]

[Schutz91]

[Shimazu89]

[Sit89]

[Smith85]

[Smith86]

Technical Report: CSL-TR-90-415. Feb. 1990.

Quach, N.. et al.. "Design and Implementation of the SNAP
Floating-Point Adder," Stanford Technical Report: CSL-TR-91-
501, Dec. 1991.

Quach, N., et al., "Leading One Prediction - Implementation.
Generalization, and Application," Stanford Technical Report: CSL-
TR-91-463, Mar. 1991.

Quach, N., et al., "On Fast IEEE Rounding," Stanford Technical
Report: CSL-TR-91-459, Jan. 1991.

Quach, N., et al., "Suggestions for Implementing a Fast IEEE
Multiply-Add-Fused Instruction," Stanford Technical Report, CSL-
TR-9 1-483, Jul. 1991.

Riepe, M, "A 53-bit RBSD Parallel Array Multiplier with IEEE
Double Precision Floating Point Rounding Implemented in 0.6um
GaAs DCFL," Technical Report, University of Michigan, 1993.

Riepe, M., et al., "Implementing IEEE Rounding in Parallel-Array
Floating-Point Multipliers," submitted to 12th IEEE Symposium on
Computer Arithmetic, 1994.

Robertson, J., "A New Class of Digital Division Methods," IRE
Transactions on Electronic Computing, EC-7, pp. 218-222, 1958.

Rowen, C, et al., "The MIPS R3010 Floating-Point Coprocessor,"
IEEE Micro, pp. 53-62, Jun. 1988.

Schutz, J., "A CMOS 100MHz Microprocessor," ISSCC, pp. 90-91,
1991.

Shimazu, Y., et al., "A 50MHz 24b Floating-Point DSP," ISSCC,
pp. 44-45, 1989.

Sit, H. P., et al., "An 80 MFLOPS Floating-Point Engine in the Intel
i860 Processor," IEEE Press, pp. 374-379, 1989.

Smith, J. E., et al., "Varieties of Decoupled Access/Execute
Computer Architectures," Internal Report, Unversity of Wisconsin-
Madison, pp. 577-586,1985.

Smith, J. E., et al., "A Simulation Study of Decoupled Architecture
Computers," IEEE Transactions on Computers, vol. C-35, no. 8,
pp. 692-702, Aug. 1986.

198

[Srruth87]

[Smith88]

[Smith91]

[Smith92]

[Sohie88]

[Staver87]

[Steiss91]

[Stritter90]

[Takeda85]

[Takla84]

[Taylor90]

[Tran85]

[Troutman86]

[TurTini89]

Smith, J. E., et al., "The ZS-1 Central Processor." Association for
Computing Machinery; pp. 199-204. 1987.

Smith, J., et al.. "Implementing Precise Interrupts in Pipelined
Processors," IEEE Transactions on Computers, vol. 37, no. 5, pp.
562-573, May 1988.

Smith, M., "Tracing With Pixie," Center for Integrated Systems,
Stanford University, Apr. 1991.

Smith, M, "Support for Speculative Execution in High-
Performance Processors," PhD dissertation, Stanford University,
Nov. 1992.

Sohie, G., et al., "A Digital Signal Processor with IEEE Floating-
Point Arithmetic," IEEE Micro, pp. 49-67, Dec. 1988.

Staver, D., "A 30-MFLOPS CMOS Single Precision Floating Point
Multiply/Accumulate Chip," ISSCC, pp. 274-275, 1987.

Steiss, et al, "A 65MHz Floating-Point Coprocessor for a RISC
Processor," ISSCC, 1991.

Stritter, S., et al., "Preliminary Benchmark of Vitesse GaAs,"
Internal Report, MIPS Corp., Feb. 1990.

Takeda, K., et al., "A Single-Chip 80-bit Floating Point Processor,"
IEEE Journal of Solid-State Circuits, vol. SC-20, no. 5, pp. 986-
991, Oct. 1985.

Takla, N., et al., "A Monolithic 64 Bit Floating-Point Coprocessor,"
IEEE Journal of Solid-State Circuits, vol SC-19, no. 4, pp. 538-
539, Aug. 1984.

Taylor, G., et al., "A 100 MHz Floating Point/Integer Processor,"
IEEE Integrated Circuits Conference, pp. 24.5.1-24.5.4, 1990.

Tran, T., et al., "A 1.0-Micron CMOS 32-Bit IEEE Format Floating
Point Chip Set for Digital Signal Processing," IEEE Custom
Integrated Circuits Conference, pp. 281-284, 1985.

Troutman, W., et al., "Design of a Standard Floating-Point Chip,"
IEEE Journal of Solid-State Circuits, vol. SC-21, no. 3, pp. 396-
399, Jun. 1986.

Turrini, S., "Optimal group distribution in carry-skip adders,"
Internal Technical Report, Digital Equipment Corp., Palo Alto,
California, 1989.

199

[Unger77]

[Upton91]

[Upton94]

[Uya84]

[Vuillemin83]

[Ware82]

[Ware84]

[Wüliams86]

[Wüliams91]

[Wüson61]

[Wolfe92]

[Wolrich84]

[Wong92]

L-nger. S. H.. et al., "Tree Realizations of Iterative Circuits." IEEE
Transactions on Computers, vol. C-26. no. 4. pp 16^-^8^ Apr
1977.

Upton, M., "The Design of an Optimal Price-Performance GaAs
Floating Point Chip," Universitv of Michigan - Internal Report
Apr. 1991.

Upton, M., et al., "Resource Allocation in a High Clock Rate
Microprocessor," In the 21st Annual International Symposium on
Computer Architecture, Chicago, Illinois, pp. 98-109, Oct. 1994.

Uya, et al., "A CMOS Floating Point Multiplier," IEEE Journal of
Solid-State Circuits, vol. SC-19, no. 5, October 1984.

Vuillemin, J. "A Very Fast Multiplication Algorithm for VLSI
Implementation," INTEGRATION: The VLSI Journal pp 39-52
1983.

Ware, F. A., et al., "64 Bit Monolithic Floating Point Processors,"
IEEE Journal of Solid-State Circuits, vol. SC-17, no 5 pp 898-
906, Oct. 1982.

Ware, "Pipelined IEEE Floating Point Processors," IEEE Press
1984.

Williams, T., et al., "SRT Division Diagrams and Their Usage in
Designing Custom Integrated Circuits for Division," Stanford
Technical Report, CSL-TR-87-326, Nov. 1986.

Williams, T., et al., "A Zero-Overhead Self-Timed 160ns 54b
CMOS Divider," ISSCC, pp. 98-99, 1991.

Wilson, J. B., "An Algorithm for Rapid Binary Division," IRE
Transactions on Electronic Computing, EC-10, pp. 662-670, 1961.

Wolfe, A., 'The Split Data Cache Model: A Cache Optimization for
Superscalar RISC Microprocessors," Technical Report, Princeton
University, 1992.

Wolrich, G., et al., "A High Performance Floating Point
Coprocessor," IEEE Journal of Solid-State Circuits, vol. SC-19 no
5, pp. 690-696, Oct. 1984.

Wong, D., "Fast Division Using Accurate Quotient Approximations
to Reduce the Number of Iterations," IEEE Transactions on
Computers, vol. 41, no. 8, pp. 981-995, Aug. 1992.

200

[Yeh93] Yeh. T.. "Two-Level Adaptive Branch Prediction and Instruction
Fetch Mechanism Designs for High Performance Superscalar
Processors," Doctoral Thesis. University of Michigan. 1993.

